依然是神奇的欧拉函数

若GCD(n,i)=k

则GCD(n/k,i/k)=1,

令i/k=x,有GCD(n/k,x)=1,

→k*GCD(n/k,x)=1中x的个数 = GCD(n,i)=k的和

范围就是求n的所有因子k

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+11;
typedef unsigned long long ll;
ll phi[maxn];
void euler(int n){
for(int i = 1; i <= n; i++){
phi[i]=i;
}
for(int i = 2; i <= n; i++){
if(phi[i]==i){
for(int j = i; j <= n; j+=i){
phi[j]=phi[j]/i*(i-1);
}
}
}
}
vector<int> P;
void chai(int n){
P.clear();
for(ll i = 1; i*i <= n; i++){
if(n%i==0){
P.push_back(i);
if(n/i!=i) P.push_back(n/i);
}
}
}
int a[maxn],n;
int main(){
euler(maxn-1);
while(scanf("%d",&n)!=EOF){
ll ans=0;
for(int i = 1; i <= n; i++) scanf("%d",&a[i]);
for(int i = 1; i <= n; i++){
chai(a[i]);
for(int j = 0; j < P.size(); j++){
ans+=phi[a[i]/P[j]]*P[j];
}
ans-=a[i];
}
printf("%llu\n",ans);
}
return 0;
}

UESTC - 1724 GCD区间求和的更多相关文章

  1. POJ 2823 Sliding Window 线段树区间求和问题

    题目链接 线段树区间求和问题,维护一个最大值一个最小值即可,线段树要用C++交才能过. 注意这道题不是求三个数的最大值最小值,是求k个的. 本题数据量较大,不能用N建树,用n建树. 还有一种做法是单调 ...

  2. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  3. vijos1740 聪明的质监员 (二分、区间求和)

    http://www.rqnoj.cn/problem/657 https://www.vijos.org/p/1740 P1740聪明的质检员 请登录后递交 标签:NOIP提高组2011[显示标签] ...

  4. LightOJ 1112 Curious Robin Hood (单点更新+区间求和)

    http://lightoj.com/volume_showproblem.php?problem=1112 题目大意: 1 i        将第i个数值输出,并将第i个值清0 2 i v     ...

  5. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  6. POJ 3468 A Simple Problem with Integers(线段树区间求和)

    Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...

  7. poj3468 A Simple Problem with Integers(线段树模板 功能:区间增减,区间求和)

    转载请注明出处:http://blog.csdn.net/u012860063 Description You have N integers, A1, A2, ... , AN. You need ...

  8. poj3468树状数组的区间更新,区间求和

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 47174   ...

  9. D 区间求和 [数学 树状数组]

    D 区间求和 题意:求 \[ \sum_{k=1}^n \sum_{l=1}^{n-k+1} \sum_{r=l+k-1}^n 区间前k大值和 \] 比赛时因为被B卡了没有深入想这道题 结果B没做出来 ...

随机推荐

  1. python学习资料资源

    廖雪峰python教程: http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000 简明py ...

  2. 详解servlet的url-pattern匹配规则.RP

    首先需要明确几容易混淆的规则: servlet容器中的匹配规则既不是简单的通配,也不是正则表达式,而是特定的规则.所以不要用通配符或者正则表达式的匹配规则来看待servlet的url-pattern. ...

  3. hdu 4278 Faulty Odometer(进制转换)

    十进制转八进制的变形: #include<stdio.h> int main() { int n; while(scanf("%d",&n)!=EOF& ...

  4. WordCountPro

    github项目地址:https://github.com/Hoyifei/SQ-T-Homework-WordCount-Advanced PSP表格   PSP2.1 PSP阶段 预估耗时 (分钟 ...

  5. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  6. Django项目运行时出现self.status.split(' ',1)[0], self.bytes_sent,ConnectionAbortedError: [WinError 10053] 你的主机中的软件中止了一个已建立的连接。

    [02/Nov/2018 09:46:51] "GET /new_industry/category HTTP/1.1" 200 2891792 Traceback (most r ...

  7. C#Task学习

    简介: Task 对象是一种的中心思想基于任务的异步模式首次引入.NET Framework 4 中. 因为由执行工作Task对象通常以异步方式执行线程池线程上而不是以同步方式在主应用程序线程中,可以 ...

  8. 【SQL】- 基础知识梳理(八) - 事务与锁

    事务的概念 事务:若干条T-SQL指令组成的一个操作数据库的最小执行单元,这个整体要么全部成功,要么全部失败.(并发控制) 事务的四个属性:原子性.一致性.隔离性.持久性.称为事务的ACID特性. 原 ...

  9. 【大数据之数据仓库】安装部署GreenPlum集群

    本篇将向大家介绍如何快捷的安装部署GreenPlum测试集群,大家可以跟着我一块儿实践一把^_^ 1.主机资源 申请2台网易云主机,操作系统必须是RedHat或者CentOS,配置尽量高一点.如果是s ...

  10. UI控件的位置

    1.该位置指的是本控件的中心点位于点 (100, 100)上(不包含尺寸),可以用于中心对齐在使用frame设置位置的情况下 self.view.center = CGPointMake(100, 1 ...