time limit per test 2 seconds

memory limit per test 256 megabytes

input standard input

output standard output

The annual college sports-ball tournament is approaching, which for trademark reasons we'll refer to as Third Month Insanity. There are a total of 2N teams participating in the tournament, numbered from 1 to 2N. The tournament lasts N rounds, with each round eliminating half the teams. The first round consists of 2N - 1 games, numbered starting from 1. In game i, team 2·i - 1 will play against team 2·i. The loser is eliminated and the winner advances to the next round (there are no ties). Each subsequent round has half as many games as the previous round, and in game i the winner of the previous round's game 2·i - 1 will play against the winner of the previous round's game2·i.

Every year the office has a pool to see who can create the best bracket. A bracket is a set of winner predictions for every game. For games in the first round you may predict either team to win, but for games in later rounds the winner you predict must also be predicted as a winner in the previous round. Note that the bracket is fully constructed before any games are actually played. Correct predictions in the first round are worth 1 point, and correct predictions in each subsequent round are worth twice as many points as the previous, so correct predictions in the final game are worth 2N - 1 points.

For every pair of teams in the league, you have estimated the probability of each team winning if they play against each other. Now you want to construct a bracket with the maximum possible expected score.

Input

Input will begin with a line containing N (2 ≤ N ≤ 6).

2N lines follow, each with 2N integers. The j-th column of the i-th row indicates the percentage chance that team i will defeat team j, unless i = j, in which case the value will be 0. It is guaranteed that the i-th column of the j-th row plus the j-th column of the i-th row will add to exactly 100.

Output

Print the maximum possible expected score over all possible brackets. Your answer must be correct to within an absolute or relative error of 10 - 9.

Formally, let your answer be a, and the jury's answer be b. Your answer will be considered correct, if .

Examples

input

2
0 40 100 100
60 0 40 40
0 60 0 45
0 60 55 0

output

1.75

input

3
0 0 100 0 100 0 0 0
100 0 100 0 0 0 100 100
0 0 0 100 100 0 0 0
100 100 0 0 0 0 100 100
0 100 0 100 0 0 100 0
100 100 100 100 100 0 0 0
100 0 100 0 0 100 0 0
100 0 100 0 100 100 100 0

output

12

input

2
0 21 41 26
79 0 97 33
59 3 0 91
74 67 9 0

output

3.141592

Note

In the first example, you should predict teams 1 and 4 to win in round 1, and team 1 to win in round 2. Recall that the winner you predict in round 2 must also be predicted as a winner in round 1.

【翻译】2n个人参加比赛。相邻两个人决出胜负进入下一轮比赛(所以共有n轮)。输出p[i][j]表示i在比赛中战胜j的概率(p[j][i]=1-p[i][j])。每一轮你可以给两两对决的选手其中之一下赌注,如果该选手胜利那么将获得2k的钱(k表示当前为第k轮)。求获得最优收益的期望值。

题解:
     ①期望动态规划。首先可以想到需要表示这一场比赛哪个人赢了。

     ②以dfs的形式降到最底层,g[i][j]表示二叉树节点i(代表了一个区间)上j成为最终胜利者的概率,f[i][j]表示上述状态下的最有收益期望值。

     ③g的转移即枚举j最后和哪些人对决并胜出。

     ④f的转移即j胜出的概率乘上收益并加上所有和j比赛的人中之前的最优期望收益值。

#include<stdio.h>
#include<algorithm>
#define go(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1003;int k,n;
double p[N][N],f[N][N],g[N][N],ans;
void dfs(int u,int l,int r)
{
if(l==r){f[u][l]=0;g[u][l]=1;return;}
int M=l+r>>1;dfs(u<<1,l,M);dfs(u<<1|1,M+1,r); go(i,1,M)go(j,M+1,n)g[u][i]+=g[u<<1][i]*g[u<<1|1][j]*p[i][j];
go(i,M+1,n)go(j,1,M)g[u][i]+=g[u<<1|1][i]*g[u<<1][j]*p[i][j];
go(i,1,M)go(j,M+1,n)f[u][i]=max(f[u][i],g[u][i]*(r-l+1)/2+f[u<<1][i]+f[u<<1|1][j]);
go(i,M+1,n)go(j,1,M)f[u][i]=max(f[u][i],g[u][i]*(r-l+1)/2+f[u<<1|1][i]+f[u<<1][j]);
}
int main()
{
scanf("%d",&k);n=1<<k;
go(i,1,n)go(j,1,n)scanf("%lf",&p[i][j]),p[i][j]/=100;
dfs(1,1,n);go(i,1,n)ans=max(ans,f[1][i]);printf("%.10lf\n",ans);
return 0;
}//Paul_Guderian

【CF MEMSQL 3.0 D. Third Month Insanity】的更多相关文章

  1. 【CF MEMSQL 3.0 B. Lazy Security Guard】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  2. 【CF MEMSQL 3.0 A. Declined Finalists】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  3. 【CF MEMSQL 3.0 E. Desk Disorder】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  4. 【CF MEMSQL 3.0 C. Pie Rules】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  5. 【CF edu 30 C. Strange Game On Matrix】

    time limit per test 1 second memory limit per test  256 megabytes input standard input output standa ...

  6. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  7. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

  8. B. Lost Number【CF交互题 暴力】

    B. Lost Number[CF交互题 暴力] This is an interactive problem. Remember to flush your output while communi ...

  9. 【CF 585E】 E. Present for Vitalik the Philatelist

    E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...

随机推荐

  1. Java源码解析——集合框架(二)——ArrayBlockingQueue

    ArrayBlockingQueue源码解析 ArrayBlockingQueue是一个阻塞式的队列,继承自AbstractBlockingQueue,间接的实现了Queue接口和Collection ...

  2. EpiiAdmin 开源的php交互性管理后台框架, 让复杂的交互变得更简单!Phper快速搭建交互性平台的开发框架,基于Thinkphp5.1+Adminlte3.0+Require.js。

    EpiiAdmin EpiiAdmin php开源交互性管理后台框架,基于Thinkphp5.1+Adminlte3.0+Require.js, 让复杂的交互变得更简单!Phper快速搭建交互性平台的 ...

  3. hadoop生态搭建(3节点)-02.ssh配置

    # ssh免密码登录 # ==================================================================node1# 一路狂按回车,最终生成(id ...

  4. 数据分析处理库Pandas——索引进阶

    Series结构 筛选数据 指定值 备注:查找出指定数值的索引和数值. 逻辑运算 备注:查找出值大于2的数据. 复合索引 DataFrame结构 显示指定列 筛选显示 备注:值小于0的显示原值,否则显 ...

  5. Python3爬虫(二)网络爬虫的尺寸与约束

    Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.网络爬虫的尺寸: 1.小规模,数据量小,爬取速度不敏感,Requests库,爬取网页 2.中规模,数据规模较大 ...

  6. P2340 奶牛会展(状压dp)

    P2340 奶牛会展 题目背景 奶牛想证明它们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N 头奶牛进行 了面试,确定了每头奶牛的智商和情商. 题目描述 贝西有权选择让哪些奶牛参加展览.由 ...

  7. web端常见兼容性问题整理

    一.html和css 各浏览器的默认内外边距不一致问题 最明显的是ul标签内外边距问题,ul标签在IE-7中,有个默认的外边距,但是在IE8以上及其他浏览器中有个默认的内边距. 解决办法:*{marg ...

  8. mysql 查询当月天数

    SELECT day(LAST_DAY('2018-02-01')) 思路: 先通过LAST_DAY() 查找当月最后一天,然后通过day()返回天数.

  9. Django admin源码剖析

    单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...

  10. Linux-Shell脚本编程-学习-5-Shell编程-使用结构化命令-if-then-else-elif

    if-then语句 if-then语句格式如下 if comman then command fi bash shell中的if语句可鞥会和我们接触的其他if语句的工作方式不同,bash shell的 ...