x = tf.placeholder(tf.float32, [None, 784])

x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any number of MNIST images, each flattened into a 784-dimensional vector. We represent this as a 2-D tensor of floating-point numbers, with a shape [None, 784]. (Here None means that a dimension can be of any length.)

TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.

在TensorFlow系统中,张量的维数来被描述为.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

    t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.

数学实例 Python 例子
0 纯量 (只有大小) s = 483
1 向量(大小和方向) v = [1.1, 2.2, 3.3]
2 矩阵(数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n阶 (自己想想看) ....

形状

TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:

形状 维数 实例
0 [ ] 0-D 一个 0维张量. 一个纯量.
1 [D0] 1-D 一个1维张量的形式[5].
2 [D0, D1] 2-D 一个2维张量的形式[3, 4].
3 [D0, D1, D2] 3-D 一个3维张量的形式 [1, 4, 3].
n [D0, D1, ... Dn] n-D 一个n维张量的形式 [D0, D1, ... Dn].

形状可以通过Python中的整数列表或元祖(int list或tuples)来表示,也或者用TensorShape class.

数据类型

除了维度,Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:

数据类型 Python 类型 描述
DT_FLOAT tf.float32 32 位浮点数.
DT_DOUBLE tf.float64 64 位浮点数.
DT_INT64 tf.int64 64 位有符号整型.
DT_INT32 tf.int32 32 位有符号整型.
DT_INT16 tf.int16 16 位有符号整型.
DT_INT8 tf.int8 8 位有符号整型.
DT_UINT8 tf.uint8 8 位无符号整型.
DT_STRING tf.string 可变长度的字节数组.每一个张量元素都是一个字节数组.
DT_BOOL tf.bool 布尔型.
DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数.
DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型.
DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型.
DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型.

tensorflow 张量的阶、形状、数据类型及None在tensor中表示的意思。的更多相关文章

  1. TensorFlow进阶(一)----张量的阶和数据类型

    张量的阶和数据类型 TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.其实张量更 ...

  2. AI - TensorFlow - 张量(Tensor)

    张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howd ...

  3. Tensorflow张量

    张量常规解释 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具. ...

  4. 121、TensorFlow张量命名

    # tf.Graph对象定义了一个命名空间对于它自身包含的tf.Operation对象 # TensorFlow自动选择一个独一无二的名字,对于数据流图中的每一个操作 # 但是给操作添加一个描述性的名 ...

  5. java中的基本数据类型一定存储在栈中吗?

    首先说明,"java中的基本数据类型一定存储在栈中的吗?”这句话肯定是错误的. 下面让我们一起来分析一下原因: 基本数据类型是放在栈中还是放在堆中,这取决于基本类型在何处声明,下面对数据类型 ...

  6. golang自己定义数据类型查询与插入postgresql中point数据

    golang自己定义数据类型查询与插入postgresql中point数据 详细代码例如以下: package main import ( "bytes" "databa ...

  7. Tensorflow张量的形状表示方法

    对输入或输出而言: 一个张量的形状为a x b x c x d,实际写出这个张量时: 最外层括号[…]表示这个是一个张量,无别的意义! 次外层括号有a个,表示这个张量里有a个样本 再往内的括号有b个, ...

  8. tensorflow张量排序

    本篇记录一下TensorFlow中张量的排序方法 tf.sort和tf.argsort # 声明tensor a是由1到5打乱顺序组成的 a = tf.random.shuffle(tf.range( ...

  9. TensorFlow—张量运算仿真神经网络的运行

    import tensorflow as tf import numpy as np ts_norm=tf.random_normal([]) with tf.Session() as sess: n ...

随机推荐

  1. jquery ajax 脑图

  2. php私有成员private的程序题目

    class base { private $member; function __construct() { echo __METHOD__ . "(begin)\n"; $thi ...

  3. Atitit.atiDataStoreService   v2 新特性

    Atitit.atiDataStoreService   v2 新特性 1.1. V1  基础实现1 1.2. V2  增加了对  $uuid  $cur_uid参数的支持1 1.3. 增加了fld  ...

  4. Atitit.互联网 软件编程 数据库方面 架构 大牛 牛人 attilax总结

    Atitit.互联网 软件编程 数据库方面 架构 大牛 牛人 attilax总结 Coolshell 称号.理论与c++ 阮一峰:: 理论高手与js高手 王银:理论高手 赵劼,网名老赵,c#高手 与理 ...

  5. ZOJ 1364 Machine Schedule(二分图最大匹配)

    题意 机器调度问题 有两个机器A,B A有n种工作模式0...n-1 B有m种工作模式0...m-1 然后又k个任务要做 每一个任务能够用A机器的模式i或b机器的模式j来完毕 机器開始都处于模式0 每 ...

  6. vue 过渡的-css-类名

    会有6个css类名在leave/enter过渡中切换 1,v-enter:定义进入过渡的开始状态,在元素被插入时生效,在下一帧中移除 2,v-enter-active:定义过渡的状态.在元素整个过渡过 ...

  7. hdu1018 Big Number 斯特林公式 求N!的位数。

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. golang解析json

    解析json,在很多语言都是很常用的,go提供了相应的包"encoding/json"来处理.直接上代码,如下: package main import ( "encod ...

  9. Scrapy爬虫入门系列3 将抓取到的数据存入数据库与验证数据有效性

    抓取到的item 会被发送到Item Pipeline进行处理 Item Pipeline常用于 cleansing HTML data validating scraped data (checki ...

  10. 前端webview开发中遇到的一些问题及其解决方法

    最近做了一个webview中的兑换页面,本来以为很简单,想不到遇到了远远超出预期数量的BUG,记下来,以备后患. 1 inline-block元素折行 BUG描述:现在我有三个DIV,要在一列等宽排列 ...