【BZOJ1731】[Usaco2005 dec]Layout 排队布局

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。

Input

* Line 1: Three space-separated integers: N, ML, and MD. * Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. * Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

* Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3
INPUT DETAILS:
There are 4 cows. Cows #1 and #3 must be no more than 10 unitsapart, cows #2 and #4 must be no more than 20 units apart, and cows#2 and #3 dislike each other and must be no fewer than 3 units apart.

Sample Output

27
四只牛分别在0,7,10,27.

题解:闲着没事刷刷水~

先根据题中给的条件建出边,然后跑从1开始的最短路(注意不是最长路,因为每一条边代表的不是距离,是限制,所以最短路就是刚好满足所有限制的最长路),如果有负环,说明无法满足所有条件;如果没有更新到点n,说明1-n没有限制,可以无现长;否则答案就是最短路。

P.S.本人只跑了一遍最短路,可能有些无解的情况找不出来,所以应该先判无解,再判能否到n。然而数据比较水~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int n,m1,m2,cnt;
int to[100000],next[100000],val[100000],head[1010],dis[1010],len[1010],inq[1010];
int pa[20010],pb[20010],pc[20010];
queue<int> q;
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
scanf("%d%d%d",&n,&m1,&m2);
int i,u,a,b,c;
memset(head,-1,sizeof(head));
for(i=2;i<=n;i++) add(i,i-1,0);
for(i=1;i<=m1;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
for(i=1;i<=m2;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
memset(dis,0x3f,sizeof(dis));
q.push(1),dis[1]=0,len[1]=1;
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+val[i])
{
dis[to[i]]=dis[u]+val[i],len[to[i]]=len[u]+1;
if(len[to[i]]>n)
{
printf("-1");
return 0;
}
if(!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
}
}
if(dis[n]==0x3f3f3f3f) printf("-2");
else printf("%d",dis[n]);
return 0;
}

【BZOJ1731】[Usaco2005 dec]Layout 排队布局 差分约束的更多相关文章

  1. [Usaco2005 dec]Layout 排队布局 差分约束

    填坑- 差分约束一般是搞一个不等式组,求xn-x1的最大最小值什么的,求最大值就转化成xa<=xb+w这样的,然后建图跑最短路(这才是最终约束的),举个例子 x1<=x0+2x2<= ...

  2. bzoj 1731: [Usaco2005 dec]Layout 排队布局 ——差分约束

    Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相 ...

  3. bzoj 1731 [Usaco2005 dec]Layout 排队布局——差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 对差分约束理解更深.还发现美妙博客:http://www.cppblog.com/me ...

  4. [bzoj1731] [Usaco2005 dec]Layout 排队布局

    差分约束系统...因为题目要求的是1和n的最大距离所以这题就跑最长路.. 对于互相反感的牛(i与j互相反感,彼此距离至少为len,i<j),就有dis[j]-dis[i]>=len.就加一 ...

  5. 1731: [Usaco2005 dec]Layout 排队布局*

    1731: [Usaco2005 dec]Layout 排队布局 题意: n头奶牛在数轴上,不同奶牛可以在同个位置处,编号小的奶牛必须在前面.m条关系,一种是两头奶牛距离必须超过d,一种是两头奶牛距离 ...

  6. bzoj 1731: [Usaco2005 dec]Layout 排队布局【差分约束】

    差分约束裸题,用了比较蠢的方法,先dfs_spfa判负环,再bfs_spfa跑最短路 注意到"奶牛排在队伍中的顺序和它们的编号是相同的",所以\( d_i-d_{i-1}>= ...

  7. BZOJ1731:[USACO]Layout 排队布局(差分约束)

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  8. 【BZOJ】1731: [Usaco2005 dec]Layout 排队布局

    [题意]给定按编号顺序站成一排的牛,给定一些约束条件如两牛距离不小于或不大于某个值,求1和n的最大距离.无解输出-1,无穷解输出-2. [算法]差分约束+最短路 [题解]图中有三个约束条件,依次分析: ...

  9. BZOJ 1731: [Usaco2005 dec]Layout 排队布局

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

随机推荐

  1. 依据错误原理解决Hibernate执行出现No CurrentSessionContext configured!错误

    (1)异常信息例如以下: 严重: Servlet.service() for servlet action threw exception java.lang.RuntimeException: &l ...

  2. 【Java】Java_01初步

    1.编程语言的发展史和发展主线 计算机语言如果你将它当做一个产品,就像我们平时用的电视机.剃须刀.电脑.手机等, 他的发展也是有规律的. 任何一个产品的发展规律都是:向着人更加容易使用.功能越来越强大 ...

  3. Visual Studio C++ MFC界面常用参数更改(改变图标,添加控件,调试打印函数等等)

    背景 需要使用Visual Studio C++做一些界面.此篇文章既是记录Visual Studio C++在调整界面时常常遇见的问题. 正文 一.如何更改窗体图标,以及生成的.exe图标 更改窗体 ...

  4. javascript 捕获异常方法

    捕获异常的实例: var str="fasdfsadfsad$$异常信息$$你看不到我"; var arr=str.split("$$"); arr[1]; 通 ...

  5. Spark on Yarn 集群运行要点

    实验版本:spark-1.6.0-bin-hadoop2.6 本次实验主要是想在已有的Hadoop集群上使用Spark,无需过多配置 1.下载&解压到一台使用spark的机器上即可 2.修改配 ...

  6. Python中json.loads解析包含\n的字符串会出错

    用python中的json.loads解析字符串,失败了. [解决过程] 1.调试了半天,终于发现,如果把其中的: "呵呵加那么多连接啊\n\n这个标准还是不错的\n\n给大家推荐一个更多的 ...

  7. iOS定位服务CoreLocation

    欢迎訪问我的新博客: 开发人员说 基于LBS的应用开发是当今移动开发中的一大热门, 当中主要涉及到地图和定位两个方面. iOS开发中, 定位服务依赖于CoreLocation框架, CLLocatio ...

  8. 459. Repeated Substring Pattern【easy】

    459. Repeated Substring Pattern[easy] Given a non-empty string check if it can be constructed by tak ...

  9. Windows Azure 系列-- Azure Redis Cache的配置和使用

    假设还没有配置Azure Power shell 能够參照这里进行配置:http://blog.csdn.net/lan_liang/article/details/46850221 打开Azure ...

  10. quantz入门和使用流程(转载)

    1.下载地址:http://quartz-scheduler.org/downloads/catalog http://quartz-scheduler.org/downloads/destinati ...