【NOIP2016提高A组模拟8.19】(雅礼联考day2)公约数
题目
给定一个正整数,在[1,n]的范围内,求出有多少个无序数对(a,b)满足gcd(a,b)=a xor b。
分析
显然a=b是一定不满足,
我们设\(a>b\),
易得gcd(a,b)<=a-b、a xor b>=a-b
那么gcd(a,b)=a xor b=a-b
gcd(a, a xor c)=c,而c是a的约数
设a-b=c,我们枚举它
a=i*c。
那么就只用判断a xor c=a-c即可。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=50005;
using namespace std;
int ans,n;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=2;j<=n/i;j++)
{
int a=i*j;
if((a^i)==(a-i))
ans++;
}
printf("%d",ans);
}
【NOIP2016提高A组模拟8.19】(雅礼联考day2)公约数的更多相关文章
- 【NOIP2016提高A组模拟8.19】(雅礼联考day2)总结
第一题又有gcd,又有xor,本来想直接弃疗,不过后来想到了个水法: 当两个相邻的数满足条件时,那么他们的倍数也可能满足条件.然后没打,只打了个暴力. 正解就是各种结论,各种定理搞搞. 第二题,想都不 ...
- 【NOIP2016提高A组模拟8.19】(雅礼联考day2)树上路径
题目 给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E.(k为路径p上的边的权值和). 分析 点分治,设当前为x的,求在以x为根的子树中,经过x的路径(包括起点或 ...
- [jzoj 4668] [NOIP2016提高A组模拟7.19] 腐败 解题报告(质数分类+慢速乘)
题目链接: http://172.16.0.132/senior/#main/show/4668 题目: 题解: 考虑把A数组里的每个元素分解质因数,对于每个质因数开一个vector存一下包含这个质因 ...
- 【JZOJ4715】【NOIP2016提高A组模拟8.19】树上路径
题目描述 给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E.(k为路径p上的边的权值和) 输入 第一行给出N,S,E.N代表树的点数,S,E如题目描述. 下面N- ...
- JZOJ 4732. 【NOIP2016提高A组模拟8.23】函数
4732. [NOIP2016提高A组模拟8.23]函数 (Standard IO) Time Limits: 1500 ms Memory Limits: 262144 KB Detailed ...
- 【NOIP2016提高A组模拟8.17】(雅礼联考day1)总结
考的还ok,暴力分很多,但有点意外的错误. 第一题找规律的题目,推了好久.100分 第二题dp,没想到. 第三题树状数组.比赛上打了个分段,准备拿60分,因为时间不够,没有对拍,其中有分段的20分莫名 ...
- 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Binary
题目 分析 首先每个数对\(2^i\)取模.也就是把每个数的第i位以后删去. 把它们放进树状数组里面. 那么当查询操作, 答案就位于区间\([2^i-x,2^{i-1}-1-x]\)中,直接查询就可以 ...
- 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Value
题目 分析 易证,最优的答案一定是按\(w_i\)从小到大放. 我们考虑dp, 先将w从小到大排个序,再设\(f_{i,j}\)表示当前做到第i个物品,已选择了j个物品的最大值.转移就是\[f_{i, ...
- 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Matrix
题目 分析 假设,我们从\(F_{i,2}\)出发,那么对\(F_{n,n}\)的贡献就是\(某个系数乘以a^{n-i}b^{n-1}r_i\): 同理,如果从\(F_{2,i}\)出发,那么对\(F ...
随机推荐
- 锋利的jQuery(第二版) 初读笔记
window.onload(): 必须等待网页中所有的内容加载完毕后(包括图片)才能执行. $(document).ready(): 网页中所有DOM结构绘制完毕后就执行,可能DOM元素关联的东西并没 ...
- 什么是 go vendor
go vendor 是golang引入管理包依赖的方式,1.5版本开始引进,1.6正式引进. 基本原理其实就是将依赖的包,特指外部包,复制到当前工程下的vendor目录下,这样go build的时候, ...
- cocos2dx基础篇(5) 按钮
这篇是直接复制的别人的,太多了,难得写... [本节内容] CCMenu.CCMenuItem其具体的六个子类 [菜单CCMenu] 菜单CCMenu是用来装载菜单按钮的图层,图层中的子节点只能够是菜 ...
- LeetCode.927-独特邮箱地址(Unique Email Addresses)
这是悦乐书的第356次更新,第383篇原创 01看题和准备 今天介绍的是LeetCode算法题中Easy级别的第218题(顺位题号是927).每封电子邮件都包含本地名称和域名,以@符号分隔. 例如,在 ...
- No repository found containing: …错误解决
由于我安装的是Eclipse ForJava Development,无JAVA EE,查找资料后发现可以自己在已有软件的基础上配置,总结如下: >>>>>点开之后,找到 ...
- win10 hhctrl.ocx 丢失
1.我的是从同事电脑上复制过来的,他电脑也是win102.复制文件“hhctrl.ocx”到系统目录下 32位系统目录为:C:\WINNT\System32:64位系统为C:\Windows\Sys ...
- 接口自动化--数据加密之AES
在接口测试中,会遇到加密的请求数据,例如:常用的base64加密,AES加密,在这里,简述用Python转化AES的加密方法 原理 官网链接:https://pycryptodome.readthed ...
- Kettle的Kitchen和Span
Kitchen——工作(job)执行器 (命令行方式) -rep : Repository name 任务包所在存储名 -user : Repository username 执行人 ...
- dp常见优化方法
noip范围内的dp优化方法: 加速状态转移 1.前缀和优化 2.单调队列优化 3.线段树或树状数组优化 精简状态 3:精简状态往往是通过对题目本身性质的分析,去省掉一些冗余的状态.相对以上三条套路性 ...
- Vue.js官方文档学习笔记(三)创建Vue实例
创建Vue实例 每个 Vue 应用都是通过用 Vue 函数创建一个新的 Vue 实例开始的: var vm=new Vue({ //选项 }) Vue的设计受到了mvvm的启发 当创建一个 Vue 实 ...