【LuoguP5280】[ZJOI2019] 线段树
题目描述
略
Sol
显然不能直接暴力模拟。
观察这个东西本质在干什么,就是某一次操作可能进行可能不进行,然后求所有情况下被标记节点总数。
这个显然可以转化为概率问题,每次有二分之一的概率进行,问最后期望多少个节点被标记。
只需要最后把答案乘上 \(2^t\) , \(t\) 为操作次数就行了。
所以我们只需要求出一个点有标记的概率,这个似乎可以一次次递推得到。
于是我们讨论一些情况。容易发现一个点被标记只可能是直接被标记或是标记下放下来,于是我们只需要设 \(P[u]\) 表示 \(u\)点 被标记的概率,设 \(Q[u]\) 表示这个节点到根的所有节点中至少有一个被标记的概率。
然后对于一次修改分情况讨论。
- 修改覆盖了一条祖先链但没有到达当前节点 \(P\rightarrow P,Q\rightarrow 0.5Q+0.5\)
- 修改直接覆盖当前点 \(P\rightarrow 0.5P+0.5,Q\rightarrow 0.5Q+0.5\)
- 修改经过当前点往下 \(P\rightarrow 0.5P,Q\rightarrow 0.5Q\)
- 修改在父亲处往其他方向走 \(P\rightarrow 0.5P+0.5Q,Q\rightarrow Q\)
- 修改在父亲上方就往其他方向走了 \(P\rightarrow P,Q\rightarrow Q\)
然后直接线段树就行了,另外维护一个 \(P\) 的和就可以算答案了。
code:
#include<bits/stdc++.h>
#define Set(a,b) memset(a,b,sizeof(a))
using namespace std;
const int N=1e5+10;
const int mod=998244353;
const int inv2=(mod+1)/2;
template <typename T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}
typedef long long ll;
template<typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
template<typename T>inline void Dec(T&x,int y){x-=y;if(x < 0) x+=mod;return;}
template<typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
inline int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
inline int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
int n,m;
int P[N<<2],Q[N<<2],S[N<<3];
struct tag{
int mul,add;
tag(int _mul=1,int _add=0){mul=_mul,add=_add;}
inline bool pd(){return (mul!=1)||add;}
inline int F(int x){return ((ll)mul*x+add)%mod;}
}Tag[N<<2];
inline tag Merge(tag A,tag B){
int mul=(ll)A.mul*B.mul%mod;
int add=((ll)B.mul*A.add+B.add)%mod;
return tag(mul,add);
}
#define ls (u<<1)
#define rs (u<<1|1)
inline void update(int u){S[u]=Sum(Sum(S[ls],S[rs]),P[u]);return;}
inline void Upd(int u){P[u]=Sum((ll)P[u]*inv2%mod,(ll)Q[u]*inv2%mod);update(u);return;}
inline void Push(int u,tag T){Q[u]=T.F(Q[u]);Tag[u]=Merge(Tag[u],T);return;}
inline void push_down(int u){if(Tag[u].pd()){Push(ls,Tag[u]);Push(rs,Tag[u]);Tag[u]=tag();}return;}
void Modify(int u,int l,int r,int L,int R){
if(l>=L&&r<=R) {// 当前节点为标记自己 , 下面的是覆盖父亲
tag T=tag(inv2,inv2);Dec(S[u],P[u]);
P[u]=T.F(P[u]),Q[u]=T.F(Q[u]);
Inc(S[u],P[u]);Tag[u]=Merge(Tag[u],T);
return;
}push_down(u);int mid=(l+r)>>1;
P[u]=(ll)P[u]*inv2%mod,Q[u]=(ll)Q[u]*inv2%mod;// 经过自己
if(mid>=R) Modify(ls,l,mid,L,R),Upd(rs);//经过一边
else if(mid<L) Modify(rs,mid+1,r,L,R),Upd(ls);
else Modify(ls,l,mid,L,mid),Modify(rs,mid+1,r,mid+1,R);
update(u);
}
int main()
{
init(n),init(m);int base=1;
for(int i=1;i<=m;++i) {
int l,r;int op;init(op);
if(op==2) printf("%lld\n",(ll)base*S[1]%mod);
else {Inc(base,base);init(l),init(r);Modify(1,1,n,l,r);}
}
return 0;
}
【LuoguP5280】[ZJOI2019] 线段树的更多相关文章
- [ZJOI2019]线段树
题目大意 一开始有一棵线段树,然后有一个操作序列,问执行这个操作序列的所有子集时线段树上有标记的节点个数和. 题解 其实我们把它除以\(2^m\)后发现就是有标记节点的期望个数. 然后套路的根据期望的 ...
- Luogu P5280 [ZJOI2019]线段树
送我退役的神题,但不得不说是ZJOIDay1最可做的一题了 先说一下考场的ZZ想法以及出来后YY的优化版吧 首先发现每次操作其实就是统计出增加的节点个数(原来的不会消失) 所以我们只要统计出线段树上每 ...
- Luogu5280 ZJOI2019线段树(线段树)
容易发现相当于求2m种操作序列所得的每种线段树tag数量之和.显然考虑每个点的贡献,也即有多少种方案会使该点上有tag.可以将点分为四类: 1.修改时被经过且有儿子被修改的节点 2.修改时被经过且没有 ...
- P5280 [ZJOI2019]线段树
题目链接:洛谷 题目描述:[比较复杂,建议看原题] 这道题太神仙了,线段树上做树形dp. 根据树形dp的套路,都是按照转移的不同情况给节点分类.这里每次modify的时候对于节点的影响也不同,所以我们 ...
- 【洛谷5280】[ZJOI2019] 线段树(线段树大力分类讨论)
点此看题面 大致题意: 给你一棵线段树,两种操作.一种操作将每棵线段树复制成两个,然后在这两个线段树中的一个上面进行\(Modify(l,r)\).另一种操作询问所有线段树的\(tag\)总和. 大力 ...
- 洛谷P5280 [ZJOI2019]线段树
https://www.luogu.org/problemnew/show/P5280 省选的时候后一半时间开这题,想了接近两个小时的各种假做法,之后想的做法已经接近正解了,但是有一些细节问题理不 ...
- Luogu5280 [ZJOI2019] 线段树 【线段树】
题目分析: 这题除了分类讨论就没啥了... 容易发现问题实际就是所有操作选和不选按顺序执行的所有答案和.考虑每个点在多少种情况下会有tag. 那么,考虑新插入一个[l,r],所有有交集的点都会被清空, ...
- [Luogu5280][ZJOI2019]线段树(线段树+DP)
https://www.luogu.org/blog/Sooke/solution-p5280 首先想到对线段树上每个点分别维护有多少棵线段树在它上有标记(f[]),然后想到对于每个操作,根据转移的不 ...
- 洛谷 P5280 - [ZJOI2019]线段树(线段树+dp,神仙题)
题面传送门 神仙 ZJOI,不会做啊不会做/kk Sooke:"这八成是考场上最可做的题",由此可见 ZJOI 之毒瘤. 首先有一个非常显然的转化,就是题目中的"将线段树 ...
随机推荐
- Linux从一个服务器拷贝文件到另一个服务器上
***复制文件夹到另外一个服务器scp -r tmp root@114.215.80.12:/work/temp输入密码 scp -r customer root@114.215.80.12:/hom ...
- CF1187E Tree Painting【换根dp】
题目传送门 题意 一棵$N$个节点的树,初始时所有的节点都是白色,第一次可以选择任意一个把它涂成黑色.接下来,只能把与黑色节点原来相连的白色节点涂成黑色(涂成黑色的点视为被删去,与其它节点不相连).每 ...
- 【VS开发】【智能语音处理】特定人语音识别算法—DTW算法
DTW(动态时间弯折)算法原理:基于动态规划(DP)的思想,解决发音长短不一的模板匹配问题.相比HMM模型算法,DTW算法的训练几乎不需要额外的计算.所以在孤立词语音识别中,DTW算法仍得到广泛的应用 ...
- selenium webdriver学习(六)------------如何得到弹出窗口
selenium webdriver学习(六)------------如何得到弹出窗口 在selenium 1.X里面得到弹出窗口是一件比较麻烦的事,特别是新开窗口没有id.name的时候.当时还整理 ...
- jquery validate 自定义校验方法
1.引入JS jquery.min.js jquery.validate.min.js messages_zh.min.js 2.添加验证方法,第一个参数为验证方法的名称,第二个参数为验证方法. $. ...
- [转帖]java必备的开发知识和技能
java必备的开发知识和技能 https://blog.csdn.net/qq_34405062/article/details/89389646 学习一下java 其实上学那会儿学的 早就过时加落伍 ...
- @OneToMany 一对多 通过表之间的链接
https://blog.csdn.net/qq_38157516/article/details/80146547 一对多 一个人对多张卡,但是一张卡只能对应一个人,典型的一对多关系,下面就用One ...
- python根据文本生成词云图
python根据文本生成词云图 效果 代码 from wordcloud import WordCloud import codecs import jieba #import jieba.analy ...
- c语言中宏定义#和 ##的作用:
转载:http://www.cnblogs.com/cyttina/archive/2013/05/11/3072969.html 看了这篇文章后了解了,但是文章中的例子比较特别,我在这里加个注释好了 ...
- 常用的PHP函数封装,有排序和数据库操作函数
//二分查找 function bin_sch($array, $low, $high, $k) { if ($low <= $high) { $mid = intval(($low + $hi ...