题目链接

题目描述

Sol

显然不能直接暴力模拟。

观察这个东西本质在干什么,就是某一次操作可能进行可能不进行,然后求所有情况下被标记节点总数。

这个显然可以转化为概率问题,每次有二分之一的概率进行,问最后期望多少个节点被标记。

只需要最后把答案乘上 \(2^t\) , \(t\) 为操作次数就行了。

所以我们只需要求出一个点有标记的概率,这个似乎可以一次次递推得到。

于是我们讨论一些情况。容易发现一个点被标记只可能是直接被标记或是标记下放下来,于是我们只需要设 \(P[u]\) 表示 \(u\)点 被标记的概率,设 \(Q[u]\) 表示这个节点到根的所有节点中至少有一个被标记的概率。

然后对于一次修改分情况讨论。

  1. 修改覆盖了一条祖先链但没有到达当前节点 \(P\rightarrow P,Q\rightarrow 0.5Q+0.5\)
  2. 修改直接覆盖当前点 \(P\rightarrow 0.5P+0.5,Q\rightarrow 0.5Q+0.5\)
  3. 修改经过当前点往下 \(P\rightarrow 0.5P,Q\rightarrow 0.5Q\)
  4. 修改在父亲处往其他方向走 \(P\rightarrow 0.5P+0.5Q,Q\rightarrow Q\)
  5. 修改在父亲上方就往其他方向走了 \(P\rightarrow P,Q\rightarrow Q\)

然后直接线段树就行了,另外维护一个 \(P\) 的和就可以算答案了。

code:

#include<bits/stdc++.h>
#define Set(a,b) memset(a,b,sizeof(a))
using namespace std;
const int N=1e5+10;
const int mod=998244353;
const int inv2=(mod+1)/2;
template <typename T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}
typedef long long ll;
template<typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
template<typename T>inline void Dec(T&x,int y){x-=y;if(x < 0) x+=mod;return;}
template<typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
inline int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
inline int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
int n,m;
int P[N<<2],Q[N<<2],S[N<<3];
struct tag{
int mul,add;
tag(int _mul=1,int _add=0){mul=_mul,add=_add;}
inline bool pd(){return (mul!=1)||add;}
inline int F(int x){return ((ll)mul*x+add)%mod;}
}Tag[N<<2];
inline tag Merge(tag A,tag B){
int mul=(ll)A.mul*B.mul%mod;
int add=((ll)B.mul*A.add+B.add)%mod;
return tag(mul,add);
}
#define ls (u<<1)
#define rs (u<<1|1)
inline void update(int u){S[u]=Sum(Sum(S[ls],S[rs]),P[u]);return;}
inline void Upd(int u){P[u]=Sum((ll)P[u]*inv2%mod,(ll)Q[u]*inv2%mod);update(u);return;}
inline void Push(int u,tag T){Q[u]=T.F(Q[u]);Tag[u]=Merge(Tag[u],T);return;}
inline void push_down(int u){if(Tag[u].pd()){Push(ls,Tag[u]);Push(rs,Tag[u]);Tag[u]=tag();}return;}
void Modify(int u,int l,int r,int L,int R){
if(l>=L&&r<=R) {// 当前节点为标记自己 , 下面的是覆盖父亲
tag T=tag(inv2,inv2);Dec(S[u],P[u]);
P[u]=T.F(P[u]),Q[u]=T.F(Q[u]);
Inc(S[u],P[u]);Tag[u]=Merge(Tag[u],T);
return;
}push_down(u);int mid=(l+r)>>1;
P[u]=(ll)P[u]*inv2%mod,Q[u]=(ll)Q[u]*inv2%mod;// 经过自己
if(mid>=R) Modify(ls,l,mid,L,R),Upd(rs);//经过一边
else if(mid<L) Modify(rs,mid+1,r,L,R),Upd(ls);
else Modify(ls,l,mid,L,mid),Modify(rs,mid+1,r,mid+1,R);
update(u);
}
int main()
{
init(n),init(m);int base=1;
for(int i=1;i<=m;++i) {
int l,r;int op;init(op);
if(op==2) printf("%lld\n",(ll)base*S[1]%mod);
else {Inc(base,base);init(l),init(r);Modify(1,1,n,l,r);}
}
return 0;
}

【LuoguP5280】[ZJOI2019] 线段树的更多相关文章

  1. [ZJOI2019]线段树

    题目大意 一开始有一棵线段树,然后有一个操作序列,问执行这个操作序列的所有子集时线段树上有标记的节点个数和. 题解 其实我们把它除以\(2^m\)后发现就是有标记节点的期望个数. 然后套路的根据期望的 ...

  2. Luogu P5280 [ZJOI2019]线段树

    送我退役的神题,但不得不说是ZJOIDay1最可做的一题了 先说一下考场的ZZ想法以及出来后YY的优化版吧 首先发现每次操作其实就是统计出增加的节点个数(原来的不会消失) 所以我们只要统计出线段树上每 ...

  3. Luogu5280 ZJOI2019线段树(线段树)

    容易发现相当于求2m种操作序列所得的每种线段树tag数量之和.显然考虑每个点的贡献,也即有多少种方案会使该点上有tag.可以将点分为四类: 1.修改时被经过且有儿子被修改的节点 2.修改时被经过且没有 ...

  4. P5280 [ZJOI2019]线段树

    题目链接:洛谷 题目描述:[比较复杂,建议看原题] 这道题太神仙了,线段树上做树形dp. 根据树形dp的套路,都是按照转移的不同情况给节点分类.这里每次modify的时候对于节点的影响也不同,所以我们 ...

  5. 【洛谷5280】[ZJOI2019] 线段树(线段树大力分类讨论)

    点此看题面 大致题意: 给你一棵线段树,两种操作.一种操作将每棵线段树复制成两个,然后在这两个线段树中的一个上面进行\(Modify(l,r)\).另一种操作询问所有线段树的\(tag\)总和. 大力 ...

  6. 洛谷P5280 [ZJOI2019]线段树

      https://www.luogu.org/problemnew/show/P5280 省选的时候后一半时间开这题,想了接近两个小时的各种假做法,之后想的做法已经接近正解了,但是有一些细节问题理不 ...

  7. Luogu5280 [ZJOI2019] 线段树 【线段树】

    题目分析: 这题除了分类讨论就没啥了... 容易发现问题实际就是所有操作选和不选按顺序执行的所有答案和.考虑每个点在多少种情况下会有tag. 那么,考虑新插入一个[l,r],所有有交集的点都会被清空, ...

  8. [Luogu5280][ZJOI2019]线段树(线段树+DP)

    https://www.luogu.org/blog/Sooke/solution-p5280 首先想到对线段树上每个点分别维护有多少棵线段树在它上有标记(f[]),然后想到对于每个操作,根据转移的不 ...

  9. 洛谷 P5280 - [ZJOI2019]线段树(线段树+dp,神仙题)

    题面传送门 神仙 ZJOI,不会做啊不会做/kk Sooke:"这八成是考场上最可做的题",由此可见 ZJOI 之毒瘤. 首先有一个非常显然的转化,就是题目中的"将线段树 ...

随机推荐

  1. pycharm修改代码后第一次运行不生效解决

    问题: 用pycharm每次修改代码后第一次运行还是原来的结果,运行第二次的时候才是修改后代码的结果 解决: 每次修改代码后保存一下即可解决

  2. 查询sq字段逗号分隔的方式

    2,3,4 -- select * from t_qs_anlycomagingconfig twhere and ( to_char(','||t.valid_month||',') like '% ...

  3. C++随笔(0)——关于const

    最近发现自己对const这一块其实不甚熟悉,所以复习一下const的相关知识点. 基本用法 const int bufSize = 512; 上面这样就可以将bufSize定义为常量,编译的时候编译器 ...

  4. [JavaScript] console.log只在查看时才会读取这个打印的对象,并把此刻相关属性和值显示出来

      /** * 写个函数解决console.log只在查看时才会读取这个打印的对象,并把此刻相关属性和值显示出来 * @param arg */ const log = function (...ar ...

  5. 浅谈spring配置定时任务的几种方式

    网上看到好多关于定时任务的讲解,以前只简单使用过注解方式,今天项目中看到基于配置的方式实现定时任务,自己做个总结,作为备忘录吧. 基于注解方式的定时任务 首先spring-mvc.xml的配置文件中添 ...

  6. etcd常用命令-增删改查

    增删改查key-values 插入数据测试 # etcdctl put name1 james# etcdctl put name11 alice# etcdctl put name12 seli # ...

  7. [转帖]Ubuntu 18.04 server安装图形界面及realvnc远程桌面连接

    Ubuntu 18.04 server安装图形界面及realvnc远程桌面连接 https://blog.csdn.net/networken/article/details/88938304 转帖 ...

  8. Python基础数据类型str字符串

    3.3字符串str ' ' 0 切片选取 [x:y] 左闭右开区间 [x:y:z] 选取x到y之间 每隔z选取一次(选取x,x+z,....) z为正 索引位置:x在y的左边 z为负 索引位置:x在y ...

  9. HNUSTOJ-1543 字符串的运算再现

    1543: 字符串的运算再现 时间限制: 1 Sec  内存限制: 128 MB提交: 34  解决: 7[提交][状态][讨论版] 题目描述 我们对字符串 S 做了以下定义:1. S ^ k表示由k ...

  10. Timetable CodeForces - 946D (区间dp)

    大意: n天, 每天m小时, 给定课程表, 每天的上课时间为第一个1到最后一个1, 一共可以逃k次课, 求最少上课时间. 每天显然是独立的, 对每天区间dp出逃$x$次课的最大减少时间, 再对$n$天 ...