什么是php递归
程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
递归,就是在运行的过程中调用自己。
构成递归需具备的条件:
函数嵌套调用过程示例
1. 子问题须与原始问题为同样的事,且更为简单;
2. 不能无限制地调用本身,须有个出口,化简为非递归状况处理。
在数学和计算机科学中,递归指由一种(或多种)简单的基本情况定义的一类对象或方法,并规定其他所有情况都能被还原为其基本情况。
例如,下列为某人祖先的递归定义:
某人的双亲是他的祖先(基本情况)。某人祖先的双亲同样是某人的祖先(递归步骤)。斐波纳契数列(Fibonacci Sequence),又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21..... I [1]
斐波纳契数列是典型的递归案例:
递归关系就是实体自己和自己建立关系。
Fib(0) = 1 [基本情况] Fib(1) = 1 [基本情况] 对所有n > 1的整数:Fib(n) = (Fib(n-1) + Fib(n-2)) [递归定义] 尽管有许多数学函数均可以递归表示,但在实际应用中,递归定义的高开销往往会让人望而却步。例如:
阶乘(1) = 1 [基本情况] 对所有n > 1的整数:阶乘(n) = (n * 阶乘(n-1)) [递归定义] 一种便于理解的心理模型,是认为递归定义对对象的定义是按照“先前定义的”同类对象来定义的。例如:你怎样才能移动100个箱子?答案:你首先移动一个箱子,并记下它移动到的位置,然后再去解决较小的问题:你怎样才能移动99个箱子?最终,你的问题将变为怎样移动一个箱子,而这时你已经知道该怎么做的。
如此的定义在数学中十分常见。例如,集合论对自然数的正式定义是:1是一个自然数,每个自然数都有一个后继,这一个后继也是自然数。
德罗斯特效应
德罗斯特效应是递归的一种视觉形式。图中女性手持的物体中有一幅她本人手持同一物体的小图片,进而小图片中还有更小的一幅她手持同一物体的图片,依此类推。
又例如,我们在两面相对的镜子之间放一根正在燃烧的蜡烛,我们会从其中一面镜子里看到一根蜡烛,蜡烛后面又有一面镜子,镜子里面又有一根蜡烛……这也是递归的表现。
简单应用
以上就是什么是php递归的详细内容,更多详细请加php技术交流群:点击加群
什么是php递归的更多相关文章
- .NET 基础 一步步 一幕幕[面向对象之方法、方法的重载、方法的重写、方法的递归]
方法.方法的重载.方法的重写.方法的递归 方法: 将一堆代码进行重用的一种机制. 语法: [访问修饰符] 返回类型 <方法名>(参数列表){ 方法主体: } 返回值类型:如果不需要写返回值 ...
- 算法笔记_013:汉诺塔问题(Java递归法和非递归法)
目录 1 问题描述 2 解决方案 2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...
- Android 算法 关于递归和二分法的小算法
// 1. 实现一个函数,在一个有序整型数组中二分查找出指定的值,找到则返回该值的位置,找不到返回 -1. package demo; public class Mytest { public st ...
- 二叉树的递归实现(java)
这里演示的二叉树为3层. 递归实现,先构造出一个root节点,先判断左子节点是否为空,为空则构造左子节点,否则进入下一步判断右子节点是否为空,为空则构造右子节点. 利用层数控制迭代次数. 依次递归第二 ...
- 递归实现n(经典的8皇后问题)皇后的问题
问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...
- C语言用分别用递归和循环求数字的阶乘的方法
以下代码均为 自己 实现,嘻嘻! 参考文章:http://blog.csdn.net/talk_8/article/details/46289683 循环法 int CalFactorial(int ...
- C#递归解决汉诺塔问题(Hanoi)
using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...
- Java之递归求和的两张方法
方法一: package com.smbea.demo; public class Student { private int sum = 0; /** * 递归求和 * @param num */ ...
- C#语言基础——递归
递归 一.概念conception: 函数体内调用本函数自身,直到符合某一条件不再继续调用. 二.应满足条件factor: (1)有反复执行的过程(调用自身): (2)有跳出反复执行过程的条件(函数出 ...
- SQL Server封闭掉 触发器递归
SQL Server关闭掉 触发器递归SQL Server 是有一个开关, 可以关闭掉 触发器递归的.EXEC sp_dboption '数据库名字', 'recursive triggers', ...
随机推荐
- each of which 用法
each of which 在以下為 同位語,非關代. 1. An urn contains two balls, each of which is known to be either white ...
- String是个啥?
String是个啥? 字符串?不可变字符串?今天想起来这个又意思的东西,所以来记录一下.我们说String是不可变字符串,那他就真的不可变吗? public class StringDemo { pu ...
- docker ssh连接不上
docker ssh连接报下面的错 Last login: Thu Apr 13 09:17:23 2017 from localhost Connection to 127.0.0.1 closed ...
- 创建一个java项目并部署到weblogic服务器
转自:https://blog.csdn.net/krystal_sl/article/details/52847953 新建一个项目的步骤 打开eclipse,右键点击new–>java pr ...
- __kindof的用法
简介: _kindof是苹果声明的一个新特性 使用方法如下: 正常我们声明一个属性: @property (nonatomic,strong) NSArray *viewArray; 看属性我们知道v ...
- Shell 脚本举例
- Windows server 2012/2016系统安装zabbix3.2客户端
一. 上传zabbix客户端文件 将zabbix_agents_3.2.0.win.zip文件上传至服务器的指定路径. 二. 解压并修改相关信息 解压已上传的客户端文件,在co ...
- vue,一路走来(3)--数据交互vue-resource
所有的静态页面布局完成后,最重要的就是数据交互了,简单来说,vue-resource就像jquery里的$.ajax,用来和后台交互数据的.放在created或ready里运行来获取或者更新数据的.不 ...
- zabbix基础之环境搭建
zabbix入门 环境部署 安装mysql #安装MySQL,官方的MySQL的repo源地址:http://repo.mysql.com/ #选择指定的MySQL版本,我这里选mysql5.7的版本 ...
- Ubuntu菜单栏的位置可以调 到左侧 或者底部
hyx@hyx:/mnt/hgfs/Linux$ gsettings set com.canonical.Unity.Launcher launcher-position Bottom