【洛谷P3338】力
题目大意:求
\]
题解:可以发现,这个和式隐藏着卷积的形式,即:设 \(f(i)={1\over i^2}\),\(g(i)=q_i\),则以上和式可以表示成 $$\sum\limits_{i=0}^j g(i)f(j-i)$$,$$\sum\limits_{i=j}^{n-1}g(i)f(i-j)$$,令 \(f(0)=0\) 即可让 j 这一项也参与运算。发现上面的和式直接就是一个卷积的计算,对于下面的和式来说,发现 f 和 g 的差是定值,这里采用将 g 翻转成 g‘,则原式变成$$\sum\limits_{i=j}^{n-1}g'(n-i-1)f(i-j)$$可以发现,下标的和成为了定值,在对求和指标进行换元之后,也成为了一个卷积。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=4e5+10;
const double pi=acos(-1);
int n,m;
struct cp{
double x,y;
cp(double xx=0,double yy=0):x(xx),y(yy){}
friend cp operator+(const cp &a,const cp &b){return cp(a.x+b.x,a.y+b.y);}
friend cp operator-(const cp &a,const cp &b){return cp(a.x-b.x,a.y-b.y);}
friend cp operator*(const cp &a,const cp &b){return cp(a.x*b.x-a.y*b.y,a.y*b.x+b.y*a.x);}
}a[maxn],b[maxn],c[maxn];
int tot=1,bit,rev[maxn];
void read_and_parse(){
scanf("%d",&n),m=2*n-2;
for(int i=0;i<n;i++)scanf("%lf",&a[i].x),b[n-1-i].x=a[i].x;
for(int i=1;i<n;i++)c[i].x=1.0/i/i;
while(tot<=m)tot<<=1,++bit;
for(int i=0;i<tot;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void fft(cp *t,int type){
for(int i=0;i<tot;i++)if(i<rev[i])swap(t[i],t[rev[i]]);
for(int mid=1;mid<tot;mid<<=1){
cp wn(cos(pi/mid),type*sin(pi/mid));
for(int j=0;j<tot;j+=(mid<<1)){
cp w(1,0);
for(int k=0;k<mid;k++,w=w*wn){
cp x=t[j+k],y=w*t[j+mid+k];
t[j+k]=x+y,t[j+mid+k]=x-y;
}
}
}
if(type==-1)for(int i=0;i<tot;i++)t[i].x/=tot;
}
void solve(){
fft(a,1),fft(b,1),fft(c,1);
for(int i=0;i<tot;i++)a[i]=a[i]*c[i],b[i]=b[i]*c[i];
fft(a,-1),fft(b,-1);
for(int i=0;i<n;i++)printf("%.3lf\n",a[i].x-b[n-1-i].x);
}
int main(){
read_and_parse();
solve();
return 0;
}
【洛谷P3338】力的更多相关文章
- 洛谷P3338 力
题意: 解: 介绍两种方法. 首先可以把那个最后除的qi拆掉. ①分前后两部分处理. 前一部分可以看做是个卷积.下面的平方不拆开,直接看成gi-j即可. 后一部分按照套路,把循环变量改成从0开始,反转 ...
- 洛谷 [P3338] 力
FFT \[E_i = F_i / q_i = \sum_{i<j} \frac {q_j} {(i - j)^2} - \sum _{ i > j} \frac{q _ j} {(i - ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 【洛谷 P3338】 [ZJOI2014]力(FFT)
题目链接 \[\Huge{E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(i-j)^2}}\] 设\(A[i]= ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- 洛谷 P3338 [ZJOI2014]力
题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...
- [bzoj3527] [洛谷P3338] [Zjoi2014]力
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
随机推荐
- 第五周作业,LVM和TCP
1.磁盘lvm管理,完成下面要求,并写出详细过程: 1) 创建一个至少有两个PV组成的大小为20G的名为testvg的VG;要求PE大小 为16MB, 而后在卷组中创建大小为5G的逻辑卷testlv; ...
- flutter 图片圆角
return Center( child: Container( padding: EdgeInsets.only(left: 10), width: 120, height: 80, child: ...
- 阶段3 2.Spring_03.Spring的 IOC 和 DI_10 构造函数注入
在AccountServiceImpl内定义三个属性 这里关注点是这几种类型.基本类型的包装类Integer 还有String类型,也包含了其他bean类型.Date 定义构造函数并赋值 重点关注在数 ...
- python UI自动化之JS定位
1.话不多说,直接贴入代码 上面的 document.getElementById 可以替换成别的定位方式,比如: 通过name获取:document.getElementsByName 通过标签获取 ...
- 慕课网_Java入门第二季
第1章 类和对象 1-1 什么是类和对象 (07:36) 1-2 如何定义 Java 中的类 (07:18) 1-3 如何使用 Java 中的对象 (04:45) 1-4 练习题 1-5 Java 中 ...
- Professional JavaScript for Web Developers P224-P225
然后第二段代码执行过程中,有1个global variabe object,1个createFunction activation object,10个anonymous function1 acti ...
- RL - 001- 入门
https://www.freecodecamp.org/news/an-introduction-to-reinforcement-learning-4339519de419/ https://gi ...
- UML_2_浅谈UML的概念和模型之UML九种图
转载:https://my.oschina.net/zhumenzhongren/blog/667353 上文我们介绍了,UML的视图,在每一种视图中都包含一个或多种图.本文我们重点讲解UML每种图的 ...
- spring aop影响dubbo返回值问题解决
问题描述: dubbo服务已经注册,客户端调用提供者服务返回值为空.(考虑动态代理.aop的返回值影响,dubbo基于spring2.5.6.SEC03,本次开发使用的是spring4.3.8) 解决 ...
- ElasticSearch的中文分词器ik
一.前言 为什么要在elasticsearch中要使用ik这样的中文分词呢,那是因为es提供的分词是英文分词,对于中文的分词就做的非常不好了,因此我们需要一个中文分词器来用于搜索和使用. 二.IK ...