题目传送门(内部题11)


输入格式

第一行,三个整数$T,K,M$,分别代表数据组数、良好标准和整数范围。
接下来$T$行,每行一个整数$n_i$,代表一个询问。


输出格式

输出$T$行,在第$i$行对于询问$i$输出一个整数,代表第$n_i$个良好的整数。
保证答案一定不超过给定的$M$。


样例

样例输入1:

1 0 23333
10

样例输出1:

20

样例输入2:

3 5 998244353
28
165
233

样例输出2:

42
9360
63360


数据范围与提示

样例1解释:

前$10$个优秀的整数是$1,2,3,4,6,8,10,12,18,20$。

数据范围:

对于所有数据,$1\leqslant T\leqslant 20,0\leqslant K\leqslant 233,1\leqslant n_i\leqslant M\leqslant {10}^{18}。


题解

对于一个质数$p$,我们考虑所有仅包含小于$p$的质因子的正整数集$G$。不难发现:
  若$x\in G$,且在$G$中已经有超过$K$个小于$x$的整数约数个数多于$x$,即$x$一定不是良好的,则$xp^c(c\geqslant 0)$也一定不可能是良好的。
这样我们就可以得到一个初步的想法。开始我们认为仅有$1$是良好的,枚举质因子$p$,对于每一个原来认为是良好的数$x$,将$xp^c(c\geqslant 0)$加入候选列表,接着将候选列表排序,除去已经可以确定不是良好的数,进入下一轮迭代。容易证明,在这个算法中,筛去一个不是良好的数$x$,是不会在后续过程中令一个原本不是良好的数,变成一个良好的数的,故筛去良好的数的过程是合法的剪枝。
然而枚举的质因子的范围有多大呢?联想$K=0$这一经典问题,我们知道对于${10}^{18}$的范围,考虑前$20$个质因子都绰绰有余了,因为将更大的质因子加入是非常不优的。在$K$更大的时候,我们采用“迭代至稳定”的思想,每一轮迭代后检查答案是否变化,如果在较长一段迭代后答案无任何变化,我们就认为质因子$p$的上界已经达到。经过实践,在$K=233$时,$p$的最大值取到$293$即可。
我们考虑如何在一轮迭代中除去确定不是良好的数。考虑维护前$K+1$大值,从小到大枚举候选列表中的数$x$,若$x$小于第$K+1$大值,我们就把这个数除去。否则更新前$K+1$大值。根据上述描述可以大致估算复杂度。设$K=233$时,${10}^{18}$内良好的数的数量为$N$,经过实践,可以知道$N$约为$50,000$。每次扩展最多把一个数扩展成$\log M$个数,在剪枝完毕后,列表大小又回归到$N$以下。

时间复杂度:$\Theta((N\times K\times \max(p)\log M)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int T,K;
long long M;
int prime[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293};
int cnt,num,size;
pair<int,long long> heap[200000],que[200000],flag[200000];
bool cmp(pair<int,long long> x,pair<int,long long> y){return x.second==y.second?x.first<y.first:x.second<y.second;}
void up(int x)
{
while(x>1)
if(heap[x]<heap[x>>1])
{
swap(heap[x],heap[x>>1]);
x>>=1;
}
else break;
}
void insert(pair<int,long long> x){heap[++size]=x;up(size);}
void down(int x)
{
int s=x<<1;
while(s<=size)
{
if(s<size&&heap[s]>heap[s|1])s|=1;
if(heap[s]<heap[x])
{
swap(heap[s],heap[x]);
x=s;
s=x<<1;
}
else break;
}
}
void change(pair<int,long long> x){heap[1]=x;down(1);}
int main()
{
scanf("%d%d%lld",&T,&K,&M);
que[++cnt]=make_pair(1,1);
for(int i=0;i<62;i++)
{
num=0;
long long lft=0,rht=M/prime[i],k=0;
while(lft<=rht)
{
lft=max(lft*prime[i],1LL);
k++;
for(int j=1;j<=cnt&&lft*que[j].second<=M;j++)
flag[++num]=make_pair(que[j].first*k,lft*que[j].second);
}
sort(flag+1,flag+num+1,cmp);
int lst=cnt;
cnt=size=0;
for(int j=1;j<=min(K+1,num);j++)
{
insert(flag[j]);
que[++cnt]=flag[j];
}
for(int j=min(K+1,num)+1;j<=num;j++)
if(flag[j].first>=heap[1].first)
{
change(flag[j]);
que[++cnt]=flag[j];
}
if(lst==cnt)break;
}
while(T--)
{
int x;
scanf("%d",&x);
printf("%lld\n",que[x].second);
}
return 0;
}

rp++

[CSP-S模拟测试]:数论(数学)的更多相关文章

  1. [考试反思]0729NOIP模拟测试10

    安度因:哇哦. 安度因:谢谢你. 第三个rank1不知为什么就来了.迷之二连?也不知道哪里来的rp 连续两次考试数学都占了比较大的比重,所以我非常幸运的得以发挥我的优势(也许是优势吧,反正数学里基本没 ...

  2. 0823NOIP模拟测试赛后总结

    考了两场感觉虚了... NOIP模拟测试30 分着考的. 就只有T2的美妙的暴力拿分了,60分rank10,挂了. T1是一道sb题,爆零了十分遗憾. 许多人都掉进了输出格式的坑里,C没大写.少个空格 ...

  3. Android单元测试与模拟测试详解

    测试与基本规范 为什么需要测试? 为了稳定性,能够明确的了解是否正确的完成开发. 更加易于维护,能够在修改代码后保证功能不被破坏. 集成一些工具,规范开发规范,使得代码更加稳定( 如通过 phabri ...

  4. [开源]微信在线信息模拟测试工具(基于Senparc.Weixin.MP开发)

    目前为止似乎还没有看到过Web版的普通消息测试工具(除了官方针对高级接口的),现有的一些桌面版的几个测试工具也都是使用XML直接请求,非常不友好,我们来尝试做一个“面向对象”操作的测试工具. 测试工具 ...

  5. 安装nginx python uwsgi环境 以及模拟测试

    uwsgi帮助文档: http://uwsgi-docs-cn.readthedocs.io/zh_CN/latest/WSGIquickstart.html http://uwsgi-docs.re ...

  6. 【模拟】【数学】CSU 1803 2016 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1803 题目大意: 给定n,m(n,m<=109)1<=i<=n,1& ...

  7. 利用Python中的mock库对Python代码进行模拟测试

    这篇文章主要介绍了利用Python中的mock库对Python代码进行模拟测试,mock库自从Python3.3依赖成为了Python的内置库,本文也等于介绍了该库的用法,需要的朋友可以参考下     ...

  8. 转 C#实现PID控制的模拟测试和曲线绘图

    C#实现PID控制的模拟测试和曲线绘图   本文分两部分,一部分是讲PID算法的实现,另一部分是讲如何用动态的曲线绘制出PID运算的结果. 首先,PID算法的理论模型请参考自动控制理论,最早出现的是模 ...

  9. Mockito:一个强大的用于Java开发的模拟测试框架

    https://blog.csdn.net/zhoudaxia/article/details/33056093 介绍 本文将介绍模拟测试框架Mockito的一些基础概念, 介绍该框架的优点,讲解应用 ...

随机推荐

  1. 类File

    * File类常用的构造方法: * (1)File(String s);//由s确定File对象的文件名 * (2)File(String directory,String s);//由directo ...

  2. Python uuid库中 几个uuid的区别

    在用到uuid库的时候,发现uuid有很多个,比较好奇,就查了一下他们的区别 uuid1()——基于时间戳 uuid2()——基于分布式计算环境DCE(Python中没有这个函数) uuid3()—— ...

  3. js-url操作记录

    禁用回退&开启回退 // 必须声明方法 否则无法删除此监听器 function backCommon() { history.pushState(null, null, document.UR ...

  4. linux如何处理多连接请求?

    1.TCP迭代服务器程序 这种方式就是服务器同一时间只处理一个客户端的请求,这个请求处理完以后才转向下一个客户请求.当然这样的服务器程序比较少见,这就像一个公司只能一次处理一个客户,后面的客户只能等待 ...

  5. Nginx配置之rewrite、proxy_pass、upstream、location

    如图,这是Nginx的配置文件nginx.conf中的一段配置代码. 在http段中定义了一个名为webservers的upstream模块,主要用于负载均衡. 在server模块中,定义了一个loc ...

  6. oracle--事物特性、锁、

    update emp set comm = 100 where empno = 7369; 使用dba用户查看事务 ADDR XIDUSN XIDSLOT XIDSQN UBAFIL UBABLK U ...

  7. Java核心技术

    [Java核心技术36讲]1.谈谈你对Java平台的理解 2.Exception和Error有什么区别 3.谈谈final.finally.finalize有什么不同?4.强引用.软引用.弱引用.虚引 ...

  8. Java代码执行过程概述

    Java代码经历三个阶段:源代码阶段(Source) -> 类加载阶段(ClassLoader) -> 运行时阶段(Runtime) 首先我们来理清一下Java代码整个执行过程, 让我们对 ...

  9. [2019杭电多校第四场][hdu6621]K-th Closest Distance(主席树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6621 题意为求区间[l,r]内第k小|a[i]-p|的值. 可以二分答案,如果二分的值为x,则判断区间 ...

  10. uWSGI、uwsgi、WSGI、之间的关系,为什么要用nginx加uWSGI部署。

    WSGI 协议 WSGI:是一种协议规范,起到规范参数的作用,就像告诉公路一样,规定超车靠右行,速度不低于90km/h,等.但这一切都是对双方进行沟通,比如,重庆到武汉这条高速路,这儿重庆和武汉就各为 ...