https://www.luogu.org/problem/P3225

这个东西有点绕。

最平凡的情况,整个原图只有一个点,那么它坍塌了之后就没有点了,不需要进行任何逃生。否则,当一个点坍塌之后,每个其他点的工人都要逃向逃生出口。

首先把双连通分量缩点,缩点完成之后必定是一片森林,树与树之间是乘法原理。

单独考虑一棵树。

平凡的情况,只有一个根节点,没有边。

这种情况下,假如原图中该双连通分量中有>=2个点,则这个双连通分量中要建立2个出口(其中一个出口坍塌了,都可以从另一个出口走),否则假如只有一个点,则只需要建立1个出口。

不平凡的情况,是一棵无根树。必定存在叶子,每个叶子都必须建立1个出口。这个出口必须建立在非原图割点的位置,假如原图这个双连通分量没有割点(这个双连通分量只有一个点,去掉都没没事),则不需要加。

不是叶子的情况,当其他节点坍塌,则必定可以去到至少1个叶子节点逃生,不需要建立逃生出口。当自己(且自己只有一个点)坍塌,每个子树自己跑去自己的叶子就可以了。

那么先特判掉n=1的情况。然后在原图中跑出原图的割点。然后遍历一遍原图的点,从没有被访问过的非割点进入,搜索连接的所有非割点,这些非割点都属于这个双连通分量,而搜索到的割点也属于这个双连通分量不过不需要进去。这样会漏掉两个割点之间的所有非割点和割点,不过这貌似没有问题?因为假如都有两个非割点了,答案就是0了。而且环的另一个半(或者1/3,或者1/4)也会搜索到那两个割点的,反正都是0。

假如只有一个割点,则这个是缩点后图的叶子,贡献C(非割点数量,1)。

假如有多于两个割点,则不贡献,少数的非割点和割点都无所谓了

假如没有割点,则这个双连通分量缩点之后只剩下自己一个点作为树,那么也是贡献C(非割点数量,2),(当该双连通分量有多于两个点时),或者0(当该双连通分量只有1个点时)。

各个双连通分量之间选点独立,各个树之间选点独立,全部乘法叠加。

从这道题可以得到一个常识:每个割点不一定仅属于一个双连通分量,比如一个dio型图。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int MAXN = 505; int n;
vector<int> G[MAXN]; int dfn[MAXN], low[MAXN], dfncnt;
bool cut[MAXN];
int vis[MAXN], viscol;
int cntcut, cntncut; void init() {
for(int i = 1; i <= 500; ++i)
G[i].clear();
dfncnt = 0;
memset(cut, false, sizeof(cut));
memset(vis, false, sizeof(vis));
memset(dfn, false, sizeof(dfn));
memset(low, false, sizeof(low));
viscol = 1;
} void tarjan(int u, int p) {
low[u] = dfn[u] = ++dfncnt;
ll sum = 0;
int ch = 0;
for(auto v : G[u]) {
if(!dfn[v]) {
tarjan(v, u);
low[u] = min(low[u], low[v]);
if(p == -1)
ch++;
else if(low[v] >= dfn[u])
cut[u] = true;
} else
low[u] = min(low[u], dfn[v]);
}
if(ch >= 2)
cut[u] = true;
} void dfs(int u, int p) {
//cout << "u=" << u << endl;
vis[u] = viscol;
++cntncut;
for(auto v : G[u]) {
if(vis[v] != viscol) {
vis[v] = viscol;
if(cut[v])
++cntcut;
else
dfs(v, u);
}
}
} int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int m, kase = 1;
while(~scanf("%d", &m)) {
if(m == 0)
return 0;
init();
n = 0;
for(int i = 1, u, v; i <= m; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
n = max(n, max(u, v));
}
for(int i = 1; i <= n; ++i) {
if(!dfn[i])
tarjan(i, -1);
/*if(cut[i])
printf("cut=%d\n",i);*/
}
unsigned long long sum1 = 0;
unsigned long long sum2 = 1;
for(int i = 1; i <= n; ++i) {
if(!vis[i] && !cut[i]) {
//cout<<"viscol="<<viscol<<endl;
cntcut = cntncut = 0;
dfs(i, -1);
if(cntcut == 0) {
if(cntncut >= 2) {
sum1 += 2;
sum2 *= cntncut * (cntncut - 1) / 2;
} else {
sum1 += 1;
}
} else if(cntcut == 1) {
++sum1;
sum2 *= cntncut;
} else
;
viscol++;
}
}
printf("Case %d: %llu %llu\n", kase++, sum1, sum2);
}
return 0;
}

洛谷 - P3225 - 矿场搭建 - 双连通分量的更多相关文章

  1. BZOJ2730:[HNOI2012]矿场搭建(双连通分量)

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  2. Tarjan 点双+割点+DFS【洛谷P3225】 [HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  3. 洛谷 P3225 [HNOI2012]矿场搭建 解题报告

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  4. 洛谷——P3225 [HNOI2012]矿场搭建

    P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤 ...

  5. 【洛谷P3225】[HNOI2012]矿场搭建

    矿场搭建 题目链接 根据题意,发生事故时会有一个挖煤点坍塌, 只有当这个点是割点,会对图的连通性产生影响, 我们首先Tarjan一遍找到所有割点,将原图除去这些割点后, 遍历一遍,找出所有连通块,分三 ...

  6. Solution -「洛谷 P5827」边双连通图计数

    \(\mathcal{Description}\)   link.   求包含 \(n\) 个点的边双连通图的个数.   \(n\le10^5\). \(\mathcal{Solution}\)    ...

  7. Solution -「洛谷 P5827」点双连通图计数

    \(\mathcal{Description}\)   link.   求有 \(n\) 个结点的点双连通图的个数,对 \(998244353\) 取模.   \(n\le10^5\). \(\mat ...

  8. 洛谷P3225 HNOI2012 矿场搭建

    题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个挖煤点坍塌之 ...

  9. 洛谷—— P3225 [HNOI2012]矿场搭建

    https://www.luogu.org/problem/show?pid=3225 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有 ...

随机推荐

  1. Postman(一)、断言

    postman常见断言方法介绍: 1.Clear a global variable (清除一个全局变量)  postman.clearGlobalVariable("variable_ke ...

  2. Reduce pandas memory size

    有关pandas存储的理论 简单又实用的pandas技巧:如何将内存占用降低90% 代码 Reducing DataFrame memory size by ~65% 上篇的改进 缓解pandas中D ...

  3. 套接字之recvfrom系统调用

    recvfrom系统调用通过用户传入的接收空间构造msghdr,并且调用sock_recvmsg,该函数调用socket操作的recvmsg函数sock->ops->recvmsg,ipv ...

  4. 菜鸟requireJS教程---2、基本知识

    菜鸟requireJS教程---2.基本知识 一.总结 一句话总结: 1.requireJS中的api就define(比如定义自己的函数)和require 2.requireJS使用的话就是配置req ...

  5. 搭建前端性能showslow平台

    ShowSlow是一个可以帮助监测各种网站性能指标趋势变化的开源工具.通过收集YSlow,Page Speed,WebPageTest和dynaTrace AJAX排名的数据形成图表以帮助了解网站的变 ...

  6. PHP CI 框架初识(一)

    CodeIgniter 是一个简单快速的PHP MVC框架.EllisLab 的工作人员发布了 CodeIgniter.CodeIgniter 是一套小巧但功能强大的.给 PHP 网站开发者使用的 W ...

  7. 1.1 DAL数据访问层

    分布式(Distributed)数据访问层(Data Access Layer),简称DAL,是利用MySQL Proxy.Memcached.集群等技术优点而构建的一个架构系统.主要目的是解决高并发 ...

  8. Grunt打包Electron,生成exe的安装包

    在之前的博客:3.electron打包生成exe文件 我们已经得到了electron打包好的应用了,目录如下,但是我们如何整合成一个安装程序,发给客户使用呢? 我们可以使用grunt-electron ...

  9. puppeteer - 操作支付宝报“操作频繁”错误的思考

    我这里想要实现的是通过转账到支付宝的方式判断一个手机号是否注册过支付宝.但查询收款人的网络请求很复杂分析不出来,使用 puppteer 也是没有解决 "操作频繁" 的问题(应该还有 ...

  10. PHP结合Ueditor并修改图片上传路径 微信小程序 拼接域名显示图片

    前言 在使用UEditor编辑器时,一般我们都是需要修改默认的图片上传路径的,下面是我整理好的修改位置和方法供大家参考. 操作 Ueditor PHP版本本身自带了一套上传程序,我们可以在此基础中,找 ...