题目链接

因为题目说可以分组,并且是求最值,所以斜率优化应该是可以搞的,现在要想怎么排序使得相邻的数在一个组中最优。

我们按照宽$w$从小到大,高$h$从小到大排序。这时发现可以筛掉一些一定没有贡献的土地,什么样的土地没有贡献呢?这样的:$h[i]<=h[j]\& \&w[i]<=w[j]$,此时i没有贡献。

所以排序并筛掉无用的土地后,剩余的土地是按照$w[i]<  w[j]< w[k]\& \&h[i]> h[j]>h[k]$ $(i<j<k)$

这时候我们的最优分组一定是选择连续的土地为一组。因为如果i和k一组,j一组,则此时的花费是$h[i]*w[k]+h[j]*w[j]$

而选择$i,j,k$一组,则花费为$h[i]*w[k]$

所以此时有$O(n^{2})$的$dp$:

$dp[i]$为前$i$块土地的最少花费,$dp[i]=max(dp[i],dp[j]+h[j+1]*w[i])$。

但是复杂度不允许QAQ

所以推式子:

设$k<j<i$,且i从j转移比从k转移更优。

$dp[j]+h[j+1]*w[i]\leq dp[k]+h[k+1]*w[i]$

$dp[j]-dp[k]\leq (h[k+1]-h[j+1])*w[i]$

$\tfrac{dp[j]-dp[k]}{h[k+1]-h[j+1]}\leq w[i]$

$\tfrac{dp[j]-dp[k]}{h[j+1]-h[k+1]}\geq- w[i]$

将$(h[j+1],dp[j]),(h[k+1],dp[k])$看成二维平面的点,因为$k<j\& \&h[k+1]>h[j+1]$,所以点集应该是从左往右。

维护一个单调队列,如果当前点为$i$,队首为$L$,则如果$L$没有$L+1$到$i$更优,则队首出队。当前最优点为队首。同时还要维护队尾。

PS:因为以前吃过精度的坑,所以写斜率优化基本是移相相乘。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 5e4 + ;
struct node {
ll w, h;
}a[maxn], b[maxn];
bool cmp(node x, node y) {
return x.w == y.w ? x.h < y.h : x.w < y.w;
}
ll dp[maxn]; int q[maxn];
ll check1(int j, int k) {
return dp[j] - dp[k];
}
ll check2(int j, int k) {
return b[j + ].h - b[k + ].h;
}
int main() {
int n, cnt = ;
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%lld%lld", &a[i].w, &a[i].h);
sort(a + , a + + n, cmp);
for (int i = ; i <= n; i++) {
while (cnt != && b[cnt].h <= a[i].h)
cnt--;
b[++cnt] = a[i];
}
int l = , r = ;
for (int i = ; i <= cnt; i++) {
while (l < r && check1(q[l], q[l + ]) >= -b[i].w * check2(q[l], q[l + ]))
l++;
dp[i] = dp[q[l]] + b[q[l] + ].h * b[i].w;
while (l < r && check1(q[r - ], q[r]) * check2(q[r], i) <= check1(q[r], i) * check2(q[r - ], q[r]))
r--;
q[++r] = i;
}
printf("%lld\n", dp[cnt]);
}

[Bzoj1597][Usaco2008 Mar]土地购买(斜率优化)的更多相关文章

  1. bzoj1597[Usaco2008 Mar]土地购买 斜率优化dp

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5524  Solved: 2074[Submit] ...

  2. bzoj1597 [Usaco2008 Mar]土地购买——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1597 就是斜率优化水题... 然而WA了十几遍,正负号处理真让人心累... 还是该负就负,别 ...

  3. BZOJ1597: [Usaco2008 Mar]土地购买——斜率优化

    题目大意: 将$n$个长方形分成若干部分,每一部分的花费为部分中长方形的$max_长*max_宽$(不是$max_{长*宽}$),求最小花费 思路: 首先,可以被其他长方形包含的长方形可以删去 然后我 ...

  4. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买 斜率优化

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MB Description 农夫John准备扩大他的农场,他正在考虑N ...

  6. bzoj 1597 [Usaco2008 Mar]土地购买——斜率优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1597 又一道斜率优化dp.负数让我混乱.不过仔细想想还是好的. 还可以方便地把那个负号放到x ...

  7. 【斜率DP】bzoj1597: [Usaco2008 Mar]土地购买

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2474  Solved: 900[Submit][ ...

  8. [bzoj1597][usaco2008 mar]土地购买 (动态规划+斜率优化)

    Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...

  9. [BZOJ1597][Usaco2008 Mar]土地购买(斜率优化)

    Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...

随机推荐

  1. sudo: pip:command not found问题解决

    python3 sudo apt-get install python3-pip python2 sudo apt-get install python-pip如果还是不行,则按照下面操作 原因:编译 ...

  2. spring自定义注解实现登陆拦截器

    1.spring自定义注解实现登陆拦截器 原理:定义一个注解和一个拦截器,拦截器拦截所有方法请求,判断该方法有没有该注解.没有,放行:有,要进行验证.从而实现方法加注解就需要验证是否登陆. 2.自定义 ...

  3. 157. [USACO Nov07] 奶牛跨栏(第三次考试大整理)

    157. [USACO Nov07] 奶牛跨栏 输入文件:hurdles.in   输出文件:hurdles.out   简单对比 时间限制:1 s   内存限制:128 MB 译 by CmYkRg ...

  4. Vue(核心思想)

    1.Es6语法普及 let和var的区别: var:定义变量时,在全局范围内都有效;所以在变量没有声明之前就能使用,值为undefined, 称为变量提升; let:声明的变量一定要在声明后使用,而且 ...

  5. 苹果CMSv10对接微信公众号教程

    首先声明下,对接公众号的话需要自行注册公众号“订阅号”  对接失败的原因大多是域名变红导致!简单的测试方法就是把域名链接发给qq好友或是qq群里看看有没有变红 域名变红以后大概率不会对接成功的,请知悉 ...

  6. Linux root用户密码重置,远程登陆,文件基本属性

    Linux root用户密码重置,远程登陆,文件基本属性 忘记Linux系统的root密码,linux系统忘记root密码的情况该怎么办呢?重新安装系统吗?当然不用!进入单用户模式更改一下root密码 ...

  7. 用命令行编译运行java文件的乱码问题

    之前在写的时候没有遇到过这个问题,用惯了eclipse之后突然用Notepad++就出现乱码了 我在编写的时候 指定Noepad++的编码是 UTF-8编码,然后进入命令行,编译的时候就出现了乱码 然 ...

  8. mini dc(选做)

    一.题目要求 提交测试截图和码云练习项目链接,实现Linux下dc的功能,计算后缀表达式的值 二.源代码 1.MyDC类 import java.util.StringTokenizer; impor ...

  9. 企业链表C语言实现

    /* * LinkList.h * * Created on: 2019年7月20日 * Author: Administrator */ #ifndef SRC_LINKLIST_H_ #defin ...

  10. 微信小程序 API 数据缓存

    微信小程序 数据缓存 (类似于 cookie) wx.setStorage() 将数据存储在本地缓存中制定的 key 中.会覆盖掉原来该 key 对应的内容,数据存储生命周期跟小程序本身一致,即除用户 ...