题目链接

因为题目说可以分组,并且是求最值,所以斜率优化应该是可以搞的,现在要想怎么排序使得相邻的数在一个组中最优。

我们按照宽$w$从小到大,高$h$从小到大排序。这时发现可以筛掉一些一定没有贡献的土地,什么样的土地没有贡献呢?这样的:$h[i]<=h[j]\& \&w[i]<=w[j]$,此时i没有贡献。

所以排序并筛掉无用的土地后,剩余的土地是按照$w[i]<  w[j]< w[k]\& \&h[i]> h[j]>h[k]$ $(i<j<k)$

这时候我们的最优分组一定是选择连续的土地为一组。因为如果i和k一组,j一组,则此时的花费是$h[i]*w[k]+h[j]*w[j]$

而选择$i,j,k$一组,则花费为$h[i]*w[k]$

所以此时有$O(n^{2})$的$dp$:

$dp[i]$为前$i$块土地的最少花费,$dp[i]=max(dp[i],dp[j]+h[j+1]*w[i])$。

但是复杂度不允许QAQ

所以推式子:

设$k<j<i$,且i从j转移比从k转移更优。

$dp[j]+h[j+1]*w[i]\leq dp[k]+h[k+1]*w[i]$

$dp[j]-dp[k]\leq (h[k+1]-h[j+1])*w[i]$

$\tfrac{dp[j]-dp[k]}{h[k+1]-h[j+1]}\leq w[i]$

$\tfrac{dp[j]-dp[k]}{h[j+1]-h[k+1]}\geq- w[i]$

将$(h[j+1],dp[j]),(h[k+1],dp[k])$看成二维平面的点,因为$k<j\& \&h[k+1]>h[j+1]$,所以点集应该是从左往右。

维护一个单调队列,如果当前点为$i$,队首为$L$,则如果$L$没有$L+1$到$i$更优,则队首出队。当前最优点为队首。同时还要维护队尾。

PS:因为以前吃过精度的坑,所以写斜率优化基本是移相相乘。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 5e4 + ;
struct node {
ll w, h;
}a[maxn], b[maxn];
bool cmp(node x, node y) {
return x.w == y.w ? x.h < y.h : x.w < y.w;
}
ll dp[maxn]; int q[maxn];
ll check1(int j, int k) {
return dp[j] - dp[k];
}
ll check2(int j, int k) {
return b[j + ].h - b[k + ].h;
}
int main() {
int n, cnt = ;
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%lld%lld", &a[i].w, &a[i].h);
sort(a + , a + + n, cmp);
for (int i = ; i <= n; i++) {
while (cnt != && b[cnt].h <= a[i].h)
cnt--;
b[++cnt] = a[i];
}
int l = , r = ;
for (int i = ; i <= cnt; i++) {
while (l < r && check1(q[l], q[l + ]) >= -b[i].w * check2(q[l], q[l + ]))
l++;
dp[i] = dp[q[l]] + b[q[l] + ].h * b[i].w;
while (l < r && check1(q[r - ], q[r]) * check2(q[r], i) <= check1(q[r], i) * check2(q[r - ], q[r]))
r--;
q[++r] = i;
}
printf("%lld\n", dp[cnt]);
}

[Bzoj1597][Usaco2008 Mar]土地购买(斜率优化)的更多相关文章

  1. bzoj1597[Usaco2008 Mar]土地购买 斜率优化dp

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5524  Solved: 2074[Submit] ...

  2. bzoj1597 [Usaco2008 Mar]土地购买——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1597 就是斜率优化水题... 然而WA了十几遍,正负号处理真让人心累... 还是该负就负,别 ...

  3. BZOJ1597: [Usaco2008 Mar]土地购买——斜率优化

    题目大意: 将$n$个长方形分成若干部分,每一部分的花费为部分中长方形的$max_长*max_宽$(不是$max_{长*宽}$),求最小花费 思路: 首先,可以被其他长方形包含的长方形可以删去 然后我 ...

  4. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买 斜率优化

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MB Description 农夫John准备扩大他的农场,他正在考虑N ...

  6. bzoj 1597 [Usaco2008 Mar]土地购买——斜率优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1597 又一道斜率优化dp.负数让我混乱.不过仔细想想还是好的. 还可以方便地把那个负号放到x ...

  7. 【斜率DP】bzoj1597: [Usaco2008 Mar]土地购买

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2474  Solved: 900[Submit][ ...

  8. [bzoj1597][usaco2008 mar]土地购买 (动态规划+斜率优化)

    Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...

  9. [BZOJ1597][Usaco2008 Mar]土地购买(斜率优化)

    Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...

随机推荐

  1. 由于代码环境有dev test prod ,每次提交代码需要很多环境,shell脚本即可解决重复命令问题

    在项目外面写入push.sh 内容为 if [  $1!='' ] then    msg=$1; else    msg='bug'; fi   git add .  git commit -m $ ...

  2. Java内存区域笔记(一)

    程序计数器: 程序计数器是一块较小的内存空间,它可以看作当前线程所执行的字节码的行号指示器. 字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令. 由于Java虚拟机的多线程 ...

  3. 【GDOI2017模拟12.9】最近公共祖先

    题目 分析 首先,将这些节点按dfs序建一棵线段树. 因为按dfs序,所以在同一子树上的节点会放在线段树相邻的位置. 发现,对于一个位置x,它的权值只会对以x为根的子树造成影响. 当修改x时,用w[x ...

  4. 【leetcode】638. Shopping Offers

    题目如下: In LeetCode Store, there are some kinds of items to sell. Each item has a price. However, ther ...

  5. 开发一个chrome插件:将百度搜索热点屏蔽掉!

    每次百度搜索,搜索结果的右边总是出现些乱七八糟的搜索热点(推的都是些什么玩意,高校替课和我有毛关系,几个悲伤的热点我用星号顶掉了). 强迫症想把它隐藏掉,我用的是chrome浏览器,受adblock( ...

  6. linux-文件系统-5

    cat /proc/partions cat /proc/mounts mount [options] -o [option] -t 文件类型 设备 挂载目录 设备: (1)设备文件:例如/dev/s ...

  7. String,Integer,int类型之间的相互转换

    String, Integer, int 三种类型之间可以两两进行转换 1. 基本数据类型到包装数据类型的转换 int -> Integer (两种方法) Integer it1 = new I ...

  8. MongoClient类

    在2.10.0版本中引入了MongoClient类,同时在其API中也说明了Mongo类会在将来的版本中被MongoClient替换(Note: This class has been superse ...

  9. CQOI2010 传送带

    题目链接:戳我 分别枚举线段AB上的出发点,和线段CD上的到达点,然后时间直接计算,取min就可以了. 但是这样子显然会T飞,(相当于1e5的平方吧?)所以我们进一步考虑性质. 然后打表(或者感性理解 ...

  10. MySQL_DML操作

    DML(Data Manipulation Laguage)指对数据库数据的增(Create)删(Delete)改(Update)操作 1.增加操作 (1)先创建一个表,如图所示: 语法:Insert ...