我满心以为本题正解为最短路,结果到处都是最大流……

几乎所有的都写了什么“对偶图”跑最短路,但我真的不知道什么叫做对偶图
-------------------------------------------------------------------------------------------------
介绍一下本题的最短路算法叭。并不算难。主要是感性理解。

首先很容易观察出这是一个最小割,那么就是求最大流了。

但是这题的点数高达10e6,按常理来说最大流应该稳稳地TLE。但是没有T好气哦

那么想办法!

首先最小割在本题时可以这样感性理解:上图是一个你同学在钢铁厂打出来的一个铁架子。你把start处用手捏起来,end处自然垂下。用一个剪刀钳把这个铁架子拦腰剪成两半。

如果剪成好几瓣(掉下来有好几个联通块的),那么显而易见,不如剪成两半(把刚才几个剪断的地方原样拼起来变成两个联通块)。

我们把三角形看成是点,黑色的边看成是连接三角形的边,那么剪成两半的意思是……在三角形点的图上找一条从左下到右上的最短路径!沿着这条路径剪开就行了。

但是这题的点数高达10e6,按常理来说SPFA应该稳稳地TLE。但是没有T好气哦

那就堆优化dijkstra。

这个加边超烦的。但思路清晰的话就没什么问题。记得在左下空白处设一个源点,右上角设一个汇点。源点连接所有邻接它的左边的、下边的三角形点,汇点连接所有邻接它的右边的、上边的三角形点。

#include <cstdio>
#include <queue>
using namespace std;
const int N=,S=N*N*+,inf=(<<)-;
int n,m,a[N][N],b[N][N],c[N][N],d[S],id[N][N],ss,tt,h[S],v[S],nx[S],w[S],eg=;
bool vis[S]={};
struct info
{
int x,w;
}data;
inline bool operator<(const info &a,const info &b)
{
return a.w>b.w;
}
priority_queue<struct info> pq;
inline void egadd(int uu,int vv,int ww)
{
nx[++eg]=h[uu];h[uu]=eg;
v[eg]=vv;w[eg]=ww;
}
void rd(int &s)
{
s=;char c=getchar();
while (c<) c=getchar();
while (c>=) s=(s<<)+(s<<)+(c^),c=getchar();
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
for (int j=;j<=m-;j++)
rd(a[i][j]);
for (int i=;i<=n-;i++)
for (int j=;j<=m;j++)
rd(b[i][j]);
for (int i=;i<=n-;i++)
for (int j=;j<=m-;j++)
rd(c[i][j]);
n--;m--;
if (!n)
{
int res=inf;
for (int i=;i<=m;i++)
if (a[][i]<res)
res=a[][i];
printf("%d",res);
return ;
}
if (!m)
{
int res=inf;
for (int i=;i<=n;i++)
if (b[i][]<res)
res=b[i][];
printf("%d",res);
return ;
}
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
id[i][j]=(i-)**m+j;
ss=n**m+;tt=ss+;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
{
egadd(id[i][j],id[i][j]+m,c[i][j]);
egadd(id[i][j]+m,id[i][j],c[i][j]);
}
for (int i=;i<=n;i++)
for (int j=;j<=m-;j++)
{
egadd(id[i][j],id[i][j+]+m,b[i][j+]);
egadd(id[i][j+]+m,id[i][j],b[i][j+]);
}
for (int i=;i<=n-;i++)
for (int j=;j<=m;j++)
{
egadd(id[i][j]+m,id[i+][j],a[i+][j]);
egadd(id[i+][j],id[i][j]+m,a[i+][j]);
}
for (int i=;i<=m;i++)
{
egadd(id[][i],tt,a[][i]);
egadd(ss,id[n][i]+m,a[n+][i]);
}
for (int i=;i<=n;i++)
{
egadd(ss,id[i][]+m,b[i][]);
egadd(id[i][m],tt,b[i][m+]);
}
for (int i=;i<=tt;i++)
d[i]=inf;
d[ss]=;
pq.push((info){ss,});
while (!pq.empty())
{
while (!pq.empty() && vis[pq.top().x])
pq.pop();
if (pq.empty()) break;
data=pq.top();
pq.pop();
int x=data.x,ww=data.w;
printf("%d %d\n",x,ww);
vis[x]=true;
for (int i=h[x];i;i=nx[i])
if (!vis[v[i]] && d[v[i]]>ww+w[i])
{
d[v[i]]=ww+w[i];
pq.push((info){v[i],d[v[i]]});
printf("Add:%d %d\n",v[i],d[v[i]]);
}
}
printf("%d",d[tt]);
return ;
}

bzoj1001 [ICPC-Beijing 2006]狼抓兔子的更多相关文章

  1. P4001 [ICPC-Beijing 2006]狼抓兔子

    题目地址:P4001 [ICPC-Beijing 2006]狼抓兔子 平面图 边与边只在顶点相交的图. 对偶图 对于一个平面图,都有其对应的对偶图. 平面图被划分出的每一个区域当作对偶图的一个点: 平 ...

  2. 2021.12.02 P4001 [ICPC-Beijing 2006]狼抓兔子(最小割)

    2021.12.02 P4001 [ICPC-Beijing 2006]狼抓兔子(最小割) https://www.luogu.com.cn/problem/P4001 题意: 把图分成两部分需要的最 ...

  3. 洛谷 P4001 [ICPC-Beijing 2006]狼抓兔子

    题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  4. BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路

    问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...

  5. 解题:BJOI 2006 狼抓兔子

    题面 可以看出来是最小割,然后你就去求最大流了 这么大的范围就是让你用网络流卡的?咋想的啊=.=??? 建议还是老老实实用 平面图最小割等于其对偶图最短路 这个东西来做吧,虽然这个东西跑的也挺慢的,最 ...

  6. ICPC-Beijing 2006 狼抓兔子

    题目描述 题解: 裸的最小割. 但是最大流跑不过去怎么办? 转变一下,既然最大流是一条左下<->右上的通路,我们可以把图划分为若干区域, 最后找左下到右上的最短路就行了. 代码: #inc ...

  7. [BZOJ 2006] 狼抓兔子

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1001 [算法] 最小割 [代码] #include<bits/stdc++.h ...

  8. 【洛谷4001】 [ICPC-Beijing 2006]狼抓兔子(最小割)

    传送门 洛谷 Solution 直接跑最小割板子就好了. 代码实现 #include<stdio.h> #include<stdlib.h> #include<strin ...

  9. 洛谷$P4001\ [ICPC-Beijing 2006]$狼抓兔子 网络流+对偶图

    正解:网络流+对偶图 解题报告: 传送门! $umm$日常看不懂题系列了$kk$.其实就是说,给定一个$n\cdot n$的网格图,求最小割$QwQ$ 然后网格图的话显然是个平面图,又看到数据范围$n ...

随机推荐

  1. 使用 v-html 绑定值

    <div id="app03"> <div v-html="message"></div> <!--这里使用v-htm ...

  2. Python每日一题 009

    题目 有个目录,里面是你自己写过的程序,统计一下你写过多少行代码.包括空行和注释,但是要分别列出来. 代码 参照网络上代码 # coding: utf-8 import os import re # ...

  3. Python之-异常处理

    1.python中处理异常的方式 #coding:utf8 filename=raw_input("请输入你要操作的文件") try: f=open(filename) print ...

  4. [CSP-S模拟测试]:斯诺(snow)(数学+前缀和+树状数组)

    题目传送门(内部题37) 输入格式 第一行一个整数$n$,表示区间的长度. 第二行一个长度为$n$的只包含$0,1,2$的字符串,表示给出的序列. 输出格式 一行一个整数,表示革命的区间的数量. 样例 ...

  5. MacBook Pro 快捷键2

    Mac 键盘快捷键 您可以按下组合键来实现通常需要鼠标.触控板或其他输入设备才能完成的操作.   要使用键盘快捷键,请按住一个或多个修饰键,同时按快捷键的最后一个键.例如,要使用快捷键 Command ...

  6. HBase 入门之数据刷写(Memstore Flush)详细说明

    接触过 HBase 的同学应该对 HBase 写数据的过程比较熟悉(不熟悉也没关系).HBase 写数据(比如 put.delete)的时候,都是写 WAL(假设 WAL 没有被关闭) ,然后将数据写 ...

  7. 力扣算法——138CopyListWithRandomPointer【M】

    A linked list is given such that each node contains an additional random pointer which could point t ...

  8. camunda授权的一些简单操作

    /** * 授权操作 */public class ZccAuthorizationService { AuthorizationService authorizationService; @Befo ...

  9. CSS Sprites技术原理和使用

      在分析各个网站的CSS时,我们经常可以看到一些网站有很多的元素共享了一张背景图片,而这张背景图片包含了所有这些元素需要的背景,这种技术就叫做CSS Sprites. 淘宝的css sprites ...

  10. export的用法

    定义环境变量并且赋值 # export MYENV= //定义环境变量并赋值 # export -p declare -x HOME=“/root“ declare -x LANG=“zh_CN.UT ...