opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量
本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html
一、统计学概念
二、为什么需要协方差
三、协方差矩阵
注:上述协方差矩阵还需要除以除以(n-1)。MATLAB使用cov函数计算协方差时自动除以了(n-1),opencv使用calcCovarMatrix函数计算后还需要手动除以(n-1)
协方差具体计算
以学生成绩举例:有5名学生,参加数学、英语、美术考试,得分如图
1.计算均值矩阵M
均值是对每一列求平均值:means=【66,60,60】
则均值矩阵M为
2.原矩阵A-均值矩阵M=Y
Y=A-M=
3.Y转置×Y
4.最后将结果除以(n-1)
四、代码运行
1.MATLAB代码
2.opencv计算数字矩阵的协方差
#include<opencv2/opencv.hpp>
#include<iostream> using namespace cv;
using namespace std; void main()
{
Mat data = (Mat_<float>(, ) << , , , , , , , , , , , , , , );
cout << "data:" << endl << data << endl;
Mat covar1, means1;//协方差,均值
calcCovarMatrix(data, covar1, means1, CV_COVAR_NORMAL | CV_COVAR_ROWS);
cout << "---------------------------" << endl;
cout << "means:" << endl << means1 << endl;
cout << "covar:" << endl << covar1/ << endl;
getchar();
waitKey();//暂停按键等待
}
3.opencv计算图片的均值、标准差、协方差
(1)均值和标准差
#include<opencv2/opencv.hpp> using namespace cv;
using namespace std; void main()
{
Mat src = imread("E://1.jpg");
imshow("img", src); Mat means, stddev, covar;
meanStdDev(src, means, stddev);//计算src图片的均值和标准差
printf("means rows:%d,means cols %d\n", means.rows, means.cols);//RGB三通道,所以均值结果是3行一列
printf("stddev rows:%d,means cols %d\n", stddev.rows, stddev.cols); for (int row = ; row < means.rows; row++)
{
printf("mean %d = %.3f\n", row, means.at<double>(row));
printf("stddev %d = %.3f\n", row, stddev.at<double>(row));
}
waitKey(0);
}
(2)均值和协方差
#include<opencv2/opencv.hpp> using namespace cv;
using namespace std; void show(Mat a,int i){
Mat covar, means;
calcCovarMatrix(a, covar, means, CV_COVAR_NORMAL | CV_COVAR_ROWS);//计算协方差,均值
cout << "mean " << i << " = " << means;
cout << "covar " << i << " = " << covar;
} void main()
{
Mat src = imread("E://1.png");
imshow("img", src); //通道分离
vector<Mat>channels;//定义Mat类型的向量
split(src, channels);//通道分离
//计算图片的协方差
show(channels.at(), );
show(channels.at(), );
show(channels.at(), ); waitKey();//暂停按键等待
}
之所以没用前面那张大图,是因为图片的协方差矩阵太大了,我随手画了个小图,输出都特别多
五、特征值和特征向量
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std; void main()
{
Mat data = (Mat_<double>(, ) <<
, ,
, ); //opencv求特征值和特征向量,输入矩阵必须是对称矩阵
Mat eigenvalue, eigenvector;
eigen(data, eigenvalue, eigenvector);
for (int i = ; i < eigenvalue.rows; i++)
cout << "eigen value " << i << " =" << eigenvalue.at<double>(i)<<endl;
cout << "eigen vector: "<< endl;
cout <<eigenvector<< endl; getchar();
}
当矩阵×2时,特征值翻倍,特征向量不变
opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量的更多相关文章
- OpenCV 学习之路(2) -- 操作像素
本节内容: 访问像素值 用指针扫描图像 用迭代器扫描图像 编写高效的图像扫描循环 扫描图像并访问相邻像素 实现简单的图像运算 图像重映射 访问像素值 准备工作: 创建一个简单函数,用它在图像中加入椒盐 ...
- opencv学习之路(12)、图像滤波
一.图像滤波简介 二.方框滤波——boxFilter() #include<opencv2/opencv.hpp> using namespace cv; void main(){ Mat ...
- opencv学习之路(39)、PCA
一.PCA理论介绍 网上已经有许多介绍pca原理的博客,这里就不重复介绍了.详情可参考 http://blog.csdn.net/zhongkelee/article/details/44064401 ...
- opencv学习之路(17)、边缘检测
一.概述 二.canny边缘检测 #include "opencv2/opencv.hpp" using namespace cv; void main() { //Canny边缘 ...
- opencv学习之路(13)、图像阈值化threshold
一.图像阈值化简介 二.固定阈值 三.自适应阈值 #include<opencv2/opencv.hpp> using namespace cv; void main(){ Mat src ...
- opencv学习之路(7)、访问图像像素
一.动态地址访问 #include <opencv2/opencv.hpp> #include<iostream> using namespace cv; using name ...
- opencv学习之路(4)、Mat类介绍,基本绘图函数
一.Mat类创建 Mat img;//创建无初始化矩阵 Mat img1(,,CV_8UC1);//200行,100列(长200,宽100) Mat img2(Size(,),CV_8UC3,Scal ...
- Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练
在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资 ...
- opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH
一.人脸识别算法之特征脸方法(Eigenface) 1.原理介绍及数据收集 特征脸方法主要是基于PCA降维实现. 详细介绍和主要思想可以参考 http://blog.csdn.net/u0100066 ...
随机推荐
- PL-SVO公式推导及代码解析:地图点重投影和特征对齐
对当前帧进行地图点重投影和特征对齐 // map reprojection & feature alignment SVO_START_TIMER("reproject") ...
- jenkins配置自动发送邮件,抄送
1.安装插件.系统管理-安装插件:可选插件:搜索Email Extension 2.设置全局变量.系统管理-系统设置:a.Jenkins Location 设置发送方邮件--- b.Extended ...
- Windows 10 编译 OpenJDK11
下载openjdk11源码 hg clone https://hg.openjdk.java.net/jdk-updates/jdk11u-dev/
- box-shodow的使用
text-shadow是给文本添加阴影效果,box-shadow是给元素块添加周边阴影效果.随着HTML5和CSS3的普及,这一特殊效果使用越来越普遍. 基本语法是{box-shadow:[inset ...
- LG3369 普通平衡树
题意 维护一些数,其中需要提供以下操作: 1.插入\(x\) 2.删除\(x\)(若有多个相同的数,只删除一个) 3.查询\(x\)的排名(排名定义为比当前数小的数的个数\(+1\)) 4.查询排名为 ...
- MySQL Server8.0版本时出现Client does not support authentication protocol requested by server
MySQL Server8.0版本时出现Client does not support authentication protocol requested by server 解决方法: 1.roo ...
- C# Asp.net中简单操作MongoDB数据库(一)
需要引用MongoDB.Driver.dll.MongoDB.Driver.core.dll.MongoDB.Bson.dll三个dll. 1.数据库连接: public class MongoDb ...
- JSTL将number类型转化为String类型
<c:set var="lm1"> <c:out value="${lm}" /> </c:set>
- 当使用eclipse将项目部署到Tomcat时,提示Tomcat version 6.0 only supports J2EE 1.2, 1.3, 1.4, and Java EE 5 Web modul
原因: 此版本选择过高.当出现此错误时,直接对项目可能无法进行修改.可以通过修改项目的配置文件来达到目的. \workspace\项目名称\.settings\org.eclipse.wst.comm ...
- mybatis 分页插件
博客地址http://www.jianshu.com/nb/5226994 引言 对于使用Mybatis时,最头痛的就是写分页,需要先写一个查询count的select语句,然后再写一个真正分页查询的 ...