[Deep Learning] 深度学习中消失的梯度
好久没有更新blog了,最近抽时间看了Nielsen的《Neural Networks and Deep Learning》感觉小有收获,分享给大家。
了解深度学习的同学可能知道,目前深度学习面临的一个问题就是在网络训练的过程中存在梯度消失问题(vanishing gradient problem),或者更广义地来讲就是不稳定梯度问题。那么到底什么是梯度消失呢?这个问题又是如何导致的呢?这就是本文要分享的内容。
1. 消失的梯度
首先,我们将一个网络在初始化之后在训练初期的结果可视化如下:
在上图中,神经元上的条可以理解为神经元的学习速率。这个网络是经过随机初始化的,但是从上图不难发现,第二层神经元上的条都要大于第一层对应神经元上的条,即第二层神经元的学习速率大于第一层神经元学习速率。那这可不可能是个巧合呢?其实不是的,在书中,Nielsen通过实验说明这种现象是普遍存在的。
我们再来看下对于一个具有四个隐层的神经网络,各隐藏层的学习速率曲线如下:
可以看出,第一层的学习速度和最后一层要差两个数量级,也就是比第四层慢了100倍。 实际上,这个问题是可以避免的,尽管替代方法并不是那么有效,同样会产生问题——在前面的层中的梯度会变得非常大!这也叫做激增的梯度问题(exploding gradient problem),这也没有比消失的梯度问题更好处理。更加一般地说,在深度神经网络中的梯度是不稳定的,在前面的层中或会消失,或会激增,这种不稳定性才是深度神经网络中基于梯度学习的根本原因。
2. 什么导致了梯度消失?
为了弄清楚为何会出现消失的梯度,来看看一个极简单的深度神经网络:每一层都只有一个单一的神经元。下面就是有三层隐藏层的神经网络:
我们把梯度的整个表达式写出来:
$\dfrac{\partial{C}}{\partial{b_{1}}}=\sigma^{\prime}(z_{1})\omega_{2}\sigma^{\prime}(z_{2})\omega_{3}\sigma^{\prime}(z_{3})\omega_{4}\sigma^{\prime}(z_{4})\dfrac{\partial{C}}{\partial{a_{4}}}$
为了理解每个项的行为,先看下sigmoid函数导数的曲线:
该导数在$\sigma^{\prime}(0)=\dfrac{1}{4}$时达到最高。现在,如果我们使用标准方法来初始化网络中的权重,那么会使用一个均值为0标准差为1的高斯分布。因此所有的权重通常会满足$|\omega_{j}|<1$。有了这些信息,我们发现会有$\omega_{j}\sigma^{\prime(z_{j})}<\dfrac{1}{4}$,并且在进行所有这些项的乘积时,最终结果肯定会指数级下降:项越多,乘积的下降也就越快。
下面我们从公式上比较一下第三层和第一层神经元的学习速率:
比较一下$\dfrac{\partial{C}}{\partial{b_{1}}}$和$\dfrac{\partial{C}}{\partial{b_{3}}}$可知,$\dfrac{\partial{C}}{\partial{b_{1}}}$要远远小于$\dfrac{\partial{C}}{\partial{b_{3}}}$。 因此,梯度消失的本质原因是:$\omega_{j}\sigma^{\prime}(z_{j})<\dfrac{1}{4}$的约束。
3. 梯度激增问题
举个例子说明下:
4. 不稳定的梯度问题
不稳定的梯度问题:根本的问题其实并非是消失的梯度问题或者激增的梯度问题,而是在前面的层上的梯度是来自后面的层上项的乘积。当存在过多的层次时,就出现了内在本质上的不稳定场景。唯一让所有层都接近相同的学习速度的方式是所有这些项的乘积都能得到一种平衡。如果没有某种机制或者更加本质的保证来达成平衡,那网络就很容易不稳定了。简而言之,真实的问题就是神经网络受限于不稳定梯度的问题。所以,如果我们使用标准的基于梯度的学习算法,在网络中的不同层会出现按照不同学习速度学习的情况。
5. 参考文献
1. Michael Nielsen,《Neural Networks and Deep Learning》
[Deep Learning] 深度学习中消失的梯度的更多相关文章
- [Machine Learning] 深度学习中消失的梯度
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度 ...
- deep learning深度学习之学习笔记基于吴恩达coursera课程
feature study within neural network 在regression问题中,根据房子的size, #bedrooms原始特征可能演算出family size(可住家庭大小), ...
- Deep Learning 深度学习 学习教程网站集锦
http://blog.sciencenet.cn/blog-517721-852551.html 学习笔记:深度学习是机器学习的突破 2006-2007年,加拿大多伦多大学教授.机器学习领域的泰斗G ...
- Deep Learning 深度学习 学习教程网站集锦(转)
http://blog.sciencenet.cn/blog-517721-852551.html 学习笔记:深度学习是机器学习的突破 2006-2007年,加拿大多伦多大学教授.机器学习领域的泰斗G ...
- (转)Deep Learning深度学习相关入门文章汇摘
from:http://farmingyard.diandian.com/post/2013-04-07/40049536511 来源:十一城 http://elevencitys.com/?p=18 ...
- A Full Hardware Guide to Deep Learning深度学习电脑配置
https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博 ...
- Deep learning深度学习的十大开源框架
Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用 ...
- Searching with Deep Learning 深度学习的搜索应用
本文首发于 vivo 互联网技术微信公众号 https://mp.weixin.qq.com/s/wLMvJPXXaND9xq-XMwY2Mg作者:Eike Dehling翻译:杨振涛 本文由来自 T ...
- 浅谈深度学习中的激活函数 - The Activation Function in Deep Learning
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活 ...
随机推荐
- Linq语法常见普通语法
闲言碎语 近期比较忙,但还是想写点什么,就分享一些基础的知识给大家看吧,希望能帮助一些linq新手,如果有其它疑问,可以进右上角群,进行交流探讨,谢谢. 开门见山 读这篇文章之前,我先说下,每一种搜索 ...
- 关于Android Studio 代理
1.需要代理 首次使用Android Studio需 推荐代理 大连东软信息学院镜像服务器地址: - http://mirrors.neusoft.edu.cn 端口:80 2.不需要代理 检查更新, ...
- debian9.6修改系统语言
(中文改英文) 在VM虚拟机中安装debian9.6(查看版本命令 cat /etc/debian_version ),安装时选择语言为中文:在控制台登录操作时,大部分提示信息显示为乱码,修改中文语言 ...
- thinkphp封装方法添加跨域请求
function wang_json($data){ //返回JSON数据格式到客户端,包含状态信息 header(' Content-Type:application/json; charset=u ...
- ngxin 配置ssl
1.上aliyun.com 申请免费ssl证书, 登录aliyun后搜索 “ca证书” , 申请使用“文件验证”,把文件传到服务器指定目录上,验证即可. 2.然后下载证书, 解压后传到服务器上, 在n ...
- 8年,从2D到3D,我的学习之路
Mickey 写了一篇 <一个本科毕业生创业两年的感悟>,从他的视角,总结了我们合作的两年经历. 我也来写一篇,介绍我的学习之路,希望对大家有所帮助,谢谢大家- 我的学习方法 1.直接从0 ...
- java中定时器的简单使用
1.首先肯定是容器一启动就要启动定时器,所以我们可以选择把定时器写在一个监听器里,容器一启动所以监听器也就跟着启动,然后定时器就可以工作了. 第一步,把自己写的监听器加到web.xml中: 第二步,写 ...
- h5手机查看
1.装个node:2.全局装个anywhere的npm包.(npm i -g anywhere)3.大功告成,现在到任意目录下用命令行执行anywhere就可以:(-p 参数可以设置启动端口) 补充: ...
- windows常用快捷键和指令
快捷键: Ctrl+鼠标滚轮:更改图标大小(桌面).缩放(开始屏幕) Ctrl+A:选择所有 Ctrl+C:复制 Ctrl+E:选择搜索框(资源管理器) Ctrl+N:新窗口(资源管理器) Ctrl+ ...
- Delphi 获取DataSet传入参数后的SQL命令
ClientDataSet1.CommandText := sSQL; ClientDataSet1.Params.Clear; ClientDataSet1.CommandText :='SEL ...