Spark2.1.1

最近运行spark任务时会发现任务经常运行很久,具体job如下:

Job Id  ▾

Description

Submitted

Duration

Stages: Succeeded/Total

Tasks (for all stages): Succeeded/Total

16

(kill)treeReduce at CRFWithLBFGS.scala:160

2018/12/03 12:39:50

2.3 h

0/5

196/4723

job中正在运行的stage如下:

Stage Id  ▾

Description

Submitted

Duration

Tasks: Succeeded/Total

Input

Output

Shuffle Read

Shuffle Write

60

(kill)treeReduce at CRFWithLBFGS.scala:160+details

2018/12/03 12:39:57

2.3 h

196/200

4.5 GB

   

1455.1 MB

该stage中有4个task一直处于running状态,这些task的统计信息异常(Input Size / RecordsShuffle Write Size / Records均为0.0B/0),并且这4个task都位于同一个executor上:

33

8938

0

RUNNING

PROCESS_LOCAL

12 / $executor_server_ip

stdout

stderr

2018/12/03 12:39:57

2.3 h

 

0.0 B / 0

 

0.0 B / 0

有问题的task所在的executor统计信息也有异常(Total Tasks0),该executor如下:

12

stdout

stderr

$executor_server_ip:36755

0 ms

0

0

0

0

0.0 B / 0

0.0 B / 0

此时Driver堆栈信息如下:

"Driver" #26 prio=5 os_prio=0 tid=0x00007f163a116000 nid=0x5192 waiting on condition [0x00007f15bb9a0000]

java.lang.Thread.State: WAITING (parking)

at sun.misc.Unsafe.park(Native Method)

- parking to wait for  <0x00000001a8c4f9e0> (a scala.concurrent.impl.Promise$CompletionLatch)

at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:997)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1304)

at scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:202)

at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:218)

at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:153)

at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:619)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:1988)

at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1026)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.reduce(RDD.scala:1008)

at org.apache.spark.rdd.RDD$$anonfun$treeAggregate$1.apply(RDD.scala:1151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.treeAggregate(RDD.scala:1128)

at org.apache.spark.rdd.RDD$$anonfun$treeReduce$1.apply(RDD.scala:1059)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.treeReduce(RDD.scala:1037)

at breeze.optimize.CachedDiffFunction.calculate(CachedDiffFunction.scala:23)

at breeze.optimize.LineSearch$$anon$1.calculate(LineSearch.scala:41)

at breeze.optimize.LineSearch$$anon$1.calculate(LineSearch.scala:30)

at breeze.optimize.StrongWolfeLineSearch.breeze$optimize$StrongWolfeLineSearch$$phi$1(StrongWolfe.scala:69)

at breeze.optimize.StrongWolfeLineSearch$$anonfun$minimize$1.apply$mcVI$sp(StrongWolfe.scala:142)

at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160)

at breeze.optimize.StrongWolfeLineSearch.minimize(StrongWolfe.scala:141)

at breeze.optimize.LBFGS.determineStepSize(LBFGS.scala:78)

at breeze.optimize.LBFGS.determineStepSize(LBFGS.scala:40)

at breeze.optimize.FirstOrderMinimizer$$anonfun$infiniteIterations$1.apply(FirstOrderMinimizer.scala:64)

at breeze.optimize.FirstOrderMinimizer$$anonfun$infiniteIterations$1.apply(FirstOrderMinimizer.scala:62)

at scala.collection.Iterator$$anon$7.next(Iterator.scala:129)

at breeze.util.IteratorImplicits$RichIterator$$anon$2.next(Implicits.scala:71)

at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)

at scala.collection.immutable.Range.foreach(Range.scala:160)

at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)

at app.package.AppClass.main(AppClass.scala)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:497)

at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:637)

可见正在runJob,并且等待executor执行结果;

有问题的executor上堆栈信息有一个可疑的thread长时间一直在running:

"shuffle-client-5-4" #94 daemon prio=5 os_prio=0 tid=0x00007fbae0e42800 nid=0x2a3a runnable [0x00007fbae4760000]

java.lang.Thread.State: RUNNABLE

at io.netty.util.Recycler$Stack.scavengeSome(Recycler.java:476)

at io.netty.util.Recycler$Stack.scavenge(Recycler.java:454)

at io.netty.util.Recycler$Stack.pop(Recycler.java:435)

at io.netty.util.Recycler.get(Recycler.java:144)

at io.netty.buffer.PooledUnsafeDirectByteBuf.newInstance(PooledUnsafeDirectByteBuf.java:39)

at io.netty.buffer.PoolArena$DirectArena.newByteBuf(PoolArena.java:727)

at io.netty.buffer.PoolArena.allocate(PoolArena.java:140)

at io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:271)

at io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:177)

at io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:168)

at io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:129)

at io.netty.channel.AdaptiveRecvByteBufAllocator$HandleImpl.allocate(AdaptiveRecvByteBufAllocator.java:104)

at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:117)

at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:652)

at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:575)

at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:489)

at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:451)

at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)

at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)

at java.lang.Thread.run(Thread.java:745)

ps:出问题的executor上当时的内存资源很空闲,进程状态也正常:

-bash-4.2$ free -m

total        used        free      shared  buff/cache   available

Mem:         257676       29251        5274         517      223150      226669

Swap:             0           0           0

怀疑此处可能有死循环,spark2.1.1使用的netty版本是4.0.42,查看netty代码:

io.netty.util.Recycler

        boolean scavengeSome() {

            WeakOrderQueue cursor = this.cursor;

            if (cursor == null) {

                cursor = head;

                if (cursor == null) {

                    return false;

                }

            }

            boolean success = false;

            WeakOrderQueue prev = this.prev;

            do {

                if (cursor.transfer(this)) {

                    success = true;

                    break;

                }

                WeakOrderQueue next = cursor.next;

                if (cursor.owner.get() == null) {

                    // If the thread associated with the queue is gone, unlink it, after

                    // performing a volatile read to confirm there is no data left to collect.

                    // We never unlink the first queue, as we don't want to synchronize on updating the head.

                    if (cursor.hasFinalData()) {

                        for (;;) {

                            if (cursor.transfer(this)) {

                                success = true;

                            } else {

                                break;

                            }

                        }

                    }

                    if (prev != null) {

                        prev.next = next;

                    }

                } else {

                    prev = cursor;

                }

                cursor = next;

            } while (cursor != null && !success);

            this.prev = prev;

            this.cursor = cursor;

            return success;

        }

问题在于cursor初始化的时候没有清空prev:

if (cursor == null) {

cursor = head;

该问题在4.0.43中被修复,升级spark2.1.1中的netty到4.0.43或以上版本可以修复问题;

官方issues位于:https://github.com/netty/netty/issues/6153

【原创】大叔问题定位分享(7)Spark任务中Job进度卡住不动的更多相关文章

  1. 【原创】大叔问题定位分享(18)beeline连接spark thrift有时会卡住

    spark 2.1.1 beeline连接spark thrift之后,执行use database有时会卡住,而use database 在server端对应的是 setCurrentDatabas ...

  2. 【原创】大叔问题定位分享(10)提交spark任务偶尔报错 org.apache.spark.SparkException: A master URL must be set in your configuration

    spark 2.1.1 一 问题重现 问题代码示例 object MethodPositionTest { val sparkConf = new SparkConf().setAppName(&qu ...

  3. 【原创】大叔问题定位分享(27)spark中rdd.cache

    spark 2.1.1 spark应用中有一些task非常慢,持续10个小时,有一个task日志如下: 2019-01-24 21:38:56,024 [dispatcher-event-loop-2 ...

  4. 【原创】大叔问题定位分享(21)spark执行insert overwrite非常慢,比hive还要慢

    最近把一些sql执行从hive改到spark,发现执行更慢,sql主要是一些insert overwrite操作,从执行计划看到,用到InsertIntoHiveTable spark-sql> ...

  5. 【原创】大叔问题定位分享(19)spark task在executors上分布不均

    最近提交一个spark应用之后发现执行非常慢,点开spark web ui之后发现卡在一个job的一个stage上,这个stage有100000个task,但是绝大部分task都分配到两个execut ...

  6. 【原创】大叔问题定位分享(17)spark查orc格式数据偶尔报错NullPointerException

    spark查orc格式的数据有时会报这个错 Caused by: java.lang.NullPointerException at org.apache.hadoop.hive.ql.io.orc. ...

  7. 【原创】大叔问题定位分享(16)spark写数据到hive外部表报错ClassCastException: org.apache.hadoop.hive.hbase.HiveHBaseTableOutputFormat cannot be cast to org.apache.hadoop.hive.ql.io.HiveOutputFormat

    spark 2.1.1 spark在写数据到hive外部表(底层数据在hbase中)时会报错 Caused by: java.lang.ClassCastException: org.apache.h ...

  8. 【原创】大叔问题定位分享(15)spark写parquet数据报错ParquetEncodingException: empty fields are illegal, the field should be ommited completely instead

    spark 2.1.1 spark里执行sql报错 insert overwrite table test_parquet_table select * from dummy 报错如下: org.ap ...

  9. 【原创】大叔问题定位分享(12)Spark保存文本类型文件(text、csv、json等)到hdfs时为什么是压缩格式的

    问题重现 rdd.repartition(1).write.csv(outPath) 写文件之后发现文件是压缩过的 write时首先会获取hadoopConf,然后从中获取是否压缩以及压缩格式 org ...

随机推荐

  1. OpenStack-Neutron(5)

    一. Neutron 概述 SDN(software-defined networking)软件定义网络,其所具有的灵活性和自动化优势使其成为云时代网络管理的主流. Neutron的设计目标是实现“网 ...

  2. SELECT list is not in GROUP BY clause and contains nonaggregated column

    报错如下: Expression # of SELECT list is not in GROUP BY clause and contains nonaggregated column ‘sss.m ...

  3. placeholder效果

    <!DOCTYPE HTML> <html lang="en-US"> <head>     <meta charset="UT ...

  4. AutoMapper入门使用

    AutoMapper入门使用 在应用开发的过程中,首先要了解整个系统中各个系统的组件的作用,然后了解系统的工作流(workflow),最后需要梳理一遍数据流(dataflow),而在整理数据流的过程中 ...

  5. Django+Vue打造购物网站(九)

    支付宝沙箱环境配置 https://openhome.alipay.com/platform/appDaily.htm?tab=info 使用支付宝账号进行登陆 RSA私钥及公钥生成 https:// ...

  6. 指针运算中的运算符:&和*

    这里&是取地址运算符,*是间接运算符. &a 的运算结果是一个指针,指针的类型是 a 的类型加个 *,指针所指向的类型是 a 的类型,指针所指向的地址嘛,那就是 a 的地址. *p 的 ...

  7. Java基础知识拾遗(一)

    类型提升规则 Java定义了几个应用于表达式的类型提升规则:所有byte.short和char类型的值都被提升为int类型.如果有一个操作数是long类型,将这个表达式提升为 long 类型:如果有一 ...

  8. SpringBoot入门-2(两种热部署方式)

    在编写代码的时候,你会发现我们只是简单把打印信息改变了,就需要重新部署,如果是这样的编码方式,那么我们估计一天下来就真的是打几个Hello World就下班了.那么如何解决热部署的问题呢?那就是spr ...

  9. DirectX11--HLSL中矩阵的内存布局和mul函数探讨

    前言 说实话,我感觉这是一个大坑,不知道为什么要设计成这样混乱的形式. 在我用的时候,以row_major矩阵,并且mul函数以向量左乘矩阵的形式来绘制时的确能够正常显示,并不会有什么感觉.但是也有人 ...

  10. Spark SQL相关总结

    1.spark 数据透视图: pivot(pivot_col, values=None) Pivots a column of the current [[DataFrame]] and perfor ...