Spark2.1.1

最近运行spark任务时会发现任务经常运行很久,具体job如下:

Job Id  ▾

Description

Submitted

Duration

Stages: Succeeded/Total

Tasks (for all stages): Succeeded/Total

16

(kill)treeReduce at CRFWithLBFGS.scala:160

2018/12/03 12:39:50

2.3 h

0/5

196/4723

job中正在运行的stage如下:

Stage Id  ▾

Description

Submitted

Duration

Tasks: Succeeded/Total

Input

Output

Shuffle Read

Shuffle Write

60

(kill)treeReduce at CRFWithLBFGS.scala:160+details

2018/12/03 12:39:57

2.3 h

196/200

4.5 GB

   

1455.1 MB

该stage中有4个task一直处于running状态,这些task的统计信息异常(Input Size / RecordsShuffle Write Size / Records均为0.0B/0),并且这4个task都位于同一个executor上:

33

8938

0

RUNNING

PROCESS_LOCAL

12 / $executor_server_ip

stdout

stderr

2018/12/03 12:39:57

2.3 h

 

0.0 B / 0

 

0.0 B / 0

有问题的task所在的executor统计信息也有异常(Total Tasks0),该executor如下:

12

stdout

stderr

$executor_server_ip:36755

0 ms

0

0

0

0

0.0 B / 0

0.0 B / 0

此时Driver堆栈信息如下:

"Driver" #26 prio=5 os_prio=0 tid=0x00007f163a116000 nid=0x5192 waiting on condition [0x00007f15bb9a0000]

java.lang.Thread.State: WAITING (parking)

at sun.misc.Unsafe.park(Native Method)

- parking to wait for  <0x00000001a8c4f9e0> (a scala.concurrent.impl.Promise$CompletionLatch)

at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:997)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1304)

at scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:202)

at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:218)

at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:153)

at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:619)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:1988)

at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1026)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.reduce(RDD.scala:1008)

at org.apache.spark.rdd.RDD$$anonfun$treeAggregate$1.apply(RDD.scala:1151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.treeAggregate(RDD.scala:1128)

at org.apache.spark.rdd.RDD$$anonfun$treeReduce$1.apply(RDD.scala:1059)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.treeReduce(RDD.scala:1037)

at breeze.optimize.CachedDiffFunction.calculate(CachedDiffFunction.scala:23)

at breeze.optimize.LineSearch$$anon$1.calculate(LineSearch.scala:41)

at breeze.optimize.LineSearch$$anon$1.calculate(LineSearch.scala:30)

at breeze.optimize.StrongWolfeLineSearch.breeze$optimize$StrongWolfeLineSearch$$phi$1(StrongWolfe.scala:69)

at breeze.optimize.StrongWolfeLineSearch$$anonfun$minimize$1.apply$mcVI$sp(StrongWolfe.scala:142)

at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160)

at breeze.optimize.StrongWolfeLineSearch.minimize(StrongWolfe.scala:141)

at breeze.optimize.LBFGS.determineStepSize(LBFGS.scala:78)

at breeze.optimize.LBFGS.determineStepSize(LBFGS.scala:40)

at breeze.optimize.FirstOrderMinimizer$$anonfun$infiniteIterations$1.apply(FirstOrderMinimizer.scala:64)

at breeze.optimize.FirstOrderMinimizer$$anonfun$infiniteIterations$1.apply(FirstOrderMinimizer.scala:62)

at scala.collection.Iterator$$anon$7.next(Iterator.scala:129)

at breeze.util.IteratorImplicits$RichIterator$$anon$2.next(Implicits.scala:71)

at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)

at scala.collection.immutable.Range.foreach(Range.scala:160)

at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)

at app.package.AppClass.main(AppClass.scala)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:497)

at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:637)

可见正在runJob,并且等待executor执行结果;

有问题的executor上堆栈信息有一个可疑的thread长时间一直在running:

"shuffle-client-5-4" #94 daemon prio=5 os_prio=0 tid=0x00007fbae0e42800 nid=0x2a3a runnable [0x00007fbae4760000]

java.lang.Thread.State: RUNNABLE

at io.netty.util.Recycler$Stack.scavengeSome(Recycler.java:476)

at io.netty.util.Recycler$Stack.scavenge(Recycler.java:454)

at io.netty.util.Recycler$Stack.pop(Recycler.java:435)

at io.netty.util.Recycler.get(Recycler.java:144)

at io.netty.buffer.PooledUnsafeDirectByteBuf.newInstance(PooledUnsafeDirectByteBuf.java:39)

at io.netty.buffer.PoolArena$DirectArena.newByteBuf(PoolArena.java:727)

at io.netty.buffer.PoolArena.allocate(PoolArena.java:140)

at io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:271)

at io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:177)

at io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:168)

at io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:129)

at io.netty.channel.AdaptiveRecvByteBufAllocator$HandleImpl.allocate(AdaptiveRecvByteBufAllocator.java:104)

at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:117)

at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:652)

at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:575)

at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:489)

at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:451)

at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)

at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)

at java.lang.Thread.run(Thread.java:745)

ps:出问题的executor上当时的内存资源很空闲,进程状态也正常:

-bash-4.2$ free -m

total        used        free      shared  buff/cache   available

Mem:         257676       29251        5274         517      223150      226669

Swap:             0           0           0

怀疑此处可能有死循环,spark2.1.1使用的netty版本是4.0.42,查看netty代码:

io.netty.util.Recycler

        boolean scavengeSome() {

            WeakOrderQueue cursor = this.cursor;

            if (cursor == null) {

                cursor = head;

                if (cursor == null) {

                    return false;

                }

            }

            boolean success = false;

            WeakOrderQueue prev = this.prev;

            do {

                if (cursor.transfer(this)) {

                    success = true;

                    break;

                }

                WeakOrderQueue next = cursor.next;

                if (cursor.owner.get() == null) {

                    // If the thread associated with the queue is gone, unlink it, after

                    // performing a volatile read to confirm there is no data left to collect.

                    // We never unlink the first queue, as we don't want to synchronize on updating the head.

                    if (cursor.hasFinalData()) {

                        for (;;) {

                            if (cursor.transfer(this)) {

                                success = true;

                            } else {

                                break;

                            }

                        }

                    }

                    if (prev != null) {

                        prev.next = next;

                    }

                } else {

                    prev = cursor;

                }

                cursor = next;

            } while (cursor != null && !success);

            this.prev = prev;

            this.cursor = cursor;

            return success;

        }

问题在于cursor初始化的时候没有清空prev:

if (cursor == null) {

cursor = head;

该问题在4.0.43中被修复,升级spark2.1.1中的netty到4.0.43或以上版本可以修复问题;

官方issues位于:https://github.com/netty/netty/issues/6153

【原创】大叔问题定位分享(7)Spark任务中Job进度卡住不动的更多相关文章

  1. 【原创】大叔问题定位分享(18)beeline连接spark thrift有时会卡住

    spark 2.1.1 beeline连接spark thrift之后,执行use database有时会卡住,而use database 在server端对应的是 setCurrentDatabas ...

  2. 【原创】大叔问题定位分享(10)提交spark任务偶尔报错 org.apache.spark.SparkException: A master URL must be set in your configuration

    spark 2.1.1 一 问题重现 问题代码示例 object MethodPositionTest { val sparkConf = new SparkConf().setAppName(&qu ...

  3. 【原创】大叔问题定位分享(27)spark中rdd.cache

    spark 2.1.1 spark应用中有一些task非常慢,持续10个小时,有一个task日志如下: 2019-01-24 21:38:56,024 [dispatcher-event-loop-2 ...

  4. 【原创】大叔问题定位分享(21)spark执行insert overwrite非常慢,比hive还要慢

    最近把一些sql执行从hive改到spark,发现执行更慢,sql主要是一些insert overwrite操作,从执行计划看到,用到InsertIntoHiveTable spark-sql> ...

  5. 【原创】大叔问题定位分享(19)spark task在executors上分布不均

    最近提交一个spark应用之后发现执行非常慢,点开spark web ui之后发现卡在一个job的一个stage上,这个stage有100000个task,但是绝大部分task都分配到两个execut ...

  6. 【原创】大叔问题定位分享(17)spark查orc格式数据偶尔报错NullPointerException

    spark查orc格式的数据有时会报这个错 Caused by: java.lang.NullPointerException at org.apache.hadoop.hive.ql.io.orc. ...

  7. 【原创】大叔问题定位分享(16)spark写数据到hive外部表报错ClassCastException: org.apache.hadoop.hive.hbase.HiveHBaseTableOutputFormat cannot be cast to org.apache.hadoop.hive.ql.io.HiveOutputFormat

    spark 2.1.1 spark在写数据到hive外部表(底层数据在hbase中)时会报错 Caused by: java.lang.ClassCastException: org.apache.h ...

  8. 【原创】大叔问题定位分享(15)spark写parquet数据报错ParquetEncodingException: empty fields are illegal, the field should be ommited completely instead

    spark 2.1.1 spark里执行sql报错 insert overwrite table test_parquet_table select * from dummy 报错如下: org.ap ...

  9. 【原创】大叔问题定位分享(12)Spark保存文本类型文件(text、csv、json等)到hdfs时为什么是压缩格式的

    问题重现 rdd.repartition(1).write.csv(outPath) 写文件之后发现文件是压缩过的 write时首先会获取hadoopConf,然后从中获取是否压缩以及压缩格式 org ...

随机推荐

  1. 5行代码实现微信小程序图片上传与腾讯免费5G存储空间的使用

    本文介绍了如何在微信小程序开发中使用腾讯官方提供的云开发功能快速实现图片的上传与存储,以及介绍云开发的 5G 存储空间的基本使用方法,这将大大提高微信小程序的开发效率,同时也是微信小程序系列教程的视频 ...

  2. 人撒娇地撒基督教扫ID祭扫我京东is啊单间

    下下卷惜西,清首花我下望心如单水.低如见惜折 卷水满门我,如二折莲开低下悠子鸦.南水水暮洲 凄暮红过在,莫处言树鸿怀莲绿门莲.杆鸿中花海 见门塘采心,何西杏知底底梅即色花.红两霜言海 秋飞曲杆明,花南 ...

  3. 最速下降方法和Newton方法

    目录 最速下降方法 Euclid范数和二次范数 采用\(\ell_1\)-范数的最速下降方向 Newton 方法 Newton 步径 二阶近似的最优解 线性化最优性条件的解 Newton 步径的仿射不 ...

  4. C语言之控制语言:分支和跳转

    if语句 #include<stdio.h> int main(void) { const int FREEZING = 0; float temperature; int cold_da ...

  5. (PAT)L2-004 这是二叉搜索树吗?(数据结构)

    题目链接:https://www.patest.cn/contests/gplt/L2-004 一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点, 其左子树中所有结点的键值小于该结点的 ...

  6. SpringBoot整合Sqlite数据库流程

    1.创建项目 方式一: 通过网站https://start.spring.io/ 方式二: 通过开发工具(IDEA或者Eclipse自行百度) 2.修改pom.xml配置文件,添加必要的驱动包 < ...

  7. JDBC数据库连接池之dbcp

    一.连接池的作用 数据库的连接是一种很重要的资源,如果一个项目比较小,连接数据库的次数比较少,我们可以采取直连的方式:“获取连接----使用----关闭连接”.但是如果一个网站访问量很大,假如同时有几 ...

  8. Javascript初识之流程控制、函数和内置对象

    一.JS流程控制 1. 1.if else var age = 19; if (age > 18){ console.log("成年了"); }else { console. ...

  9. 初识服务器和Linux

    一.什么是计算机 1.介绍 一说到计算机,我们首先想到的就是电脑,没错,电脑就是计算机,但是计算机不只是电脑. 所谓的电脑就是一种计算机,而计算机其实是:接收使用者输入的指令与资料,经中央处理器的数学 ...

  10. java 将保单数据 生成图片

    主要代码:---------------------------------------------------------------- /** * 生成图片 * @param cellsValue ...