Description

Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N colors. The colors are numbered 1 through N.He will arrange all of the balls in a row from left to right, in arbitrary order. Then, for each of the N colors, he will paint the leftmost ball of that color into color 0, a color different from any of the N original colors.After painting, how many sequences of the colors of the balls are possible? Find this number modulo 109+7. 1≤N,K≤2000

Input

The input is given from Standard Input in the following format: N K

Output

Print the number of the possible sequences of the colors of the balls after painting, modulo 109+7.

 
题意:有$n$种颜色的球,标号$1$到$n$,每种颜色有$k$个。将$nk$个球随机排列后,将每种颜色的第一个球涂成颜色$0$,求最终可能得到的颜色序列的方案数。
分析:
令$f(i,j)~(i\leq j)$表示已经放置了i个编号为0的球与j种第一次出现的位置最靠前的颜色的方案数。每次在当前的第一个空位放置一个颜色为$0$的球或是一种未出现的颜色的球。可得转移方程:
$$f(i,j)=f(i-1,j)+\binom{n-i+(n-j+1)\cdot(k-1)-1}{k-2}\cdot(n-j+1)\cdot f(i,j-1)$$
时间复杂度$O(nk)$。
 
 #include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=2e3+;
const int mod=1e9+;
int n,m,fac[N*N],inv[N*N],f[N][N];
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void Mod(int& a,int b){a+=b;if(a>=mod)a-=mod;}
int power(int a,int b)
{
int ans=;
while(b)
{
if(b&)ans=1ll*ans*a%mod;
a=1ll*a*a%mod;b>>=;
}
return ans;
}
int C(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
int main()
{
n=read();m=read();
if(m==){printf("");return ;}
fac[]=;
for(int i=;i<=n*m;i++)fac[i]=1ll*fac[i-]*i%mod;
inv[n*m]=power(fac[n*m],mod-);
for(int i=n*m;i>=;i--)inv[i-]=1ll*inv[i]*i%mod;
f[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
{
f[i][j]=f[i-][j];
if(!j)continue;
Mod(f[i][j],1ll*f[i][j-]*(n-j+)%mod*C(n-i+(n-j+)*(m-)-,m-)%mod);
}
printf("%d",f[n][n]);
return ;
}

【AGC 002F】Leftmost Ball的更多相关文章

  1. 【agc002f】Leftmost Ball(动态规划)

    [agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...

  2. 【AGC002F】Leftmost Ball DP 数学

    题目大意 有\(n\)种颜色的球,每种\(m\)个.现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色.求最终的颜色序列有多少种,对\(1000000007\ ...

  3. 【agc002f】Leftmost Ball

    题目大意 有n种颜色,每种k个球.将这些球任意排列,将每种颜色中最前面的一个求涂成白色(就是n+1种颜色),求最终的排列的方案的个数. 解题思路 考虑如何计算不会算重, 按颜色顺序,每次往排列插入k个 ...

  4. 【AGC 005F】Many Easy Problems

    Description One day, Takahashi was given the following problem from Aoki: You are given a tree with ...

  5. 【AGC 036C】GP2

    https://atcoder.jp/contests/agc036/tasks/agc036_c 题意 有一个长度为 $n$ 的非负整数序列 $x$,初始时全为 $0$.一次操作定义为选择一对正整数 ...

  6. 【AtCoder】AGC022 F - Leftmost Ball 计数DP

    [题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...

  7. 【AGC】增长服务1-远程配置示例

    ​ [AGC]增长服务1-远程配置示例 前言:上一次笔者给大家带来了AGC领域的性能管理服务的学习.这次我们再继续深化学习AGC的相关知识.在文章开始之前,再给读者简单介绍一下AGC,以免第一次来的读 ...

  8. 【MVC 4】4.MVC 基本工具(Visual Studio 的单元测试、使用Moq)

     作者:[美]Adam Freeman      来源:<精通ASP.NET MVC 4> 3.Visual Studio 的单元测试 有很多.NET单元测试包,其中很多是开源和免费的.本 ...

  9. 【面试题】100IT名企java面试必考面试题

    一.Java 基础部分 1.   JAVA 的基本数据类型有哪些 ?   String 是不是基本数据类型 ? Java  有 8 种基本数据类型:           byte    int     ...

随机推荐

  1. Java集合框架体系JCF

    Java 集合框架体系作为Java 中十分重要的一环, 在我们的日常开发中扮演者十分重要的角色, 那么什么是Java集合框架体系呢? 在Java语言中,Java语言的设计者对常用的数据结构和算法做了一 ...

  2. bilibili用户信息全栈爬取

  3. Azure导出所有用户权限---powershell命令

      直接运行脚本         #requires -Version 3.0 -Modules AzureRM.Resourcesparam(    [switch]    $GroupRolesB ...

  4. 网页控制脚本修改系统信息 C语言调用uci

    0 交叉编译生成程序 http://tuntuntun.net/%E5%9C%A8OpenWrt%E4%B8%8A%E8%BF%90%E8%A1%8C%E7%AC%AC%E4%B8%80%E4%B8% ...

  5. MongoDB索引基本操作

    一.简介 在MongoDB建立索引能提高查询效率,只需要扫描索引只存储的这个集合的一小部分,并只把这小部分加载到内存中,效率大大的提高,如果没有建立索引,在查询时,MongoDB必须执行全表扫描,在数 ...

  6. bzoj2006 [NOI2010]超级钢琴 (及其拓展)

    bzoj2006 [NOI2010]超级钢琴 给定一个序列,求长度在 \([L,\ R]\) 之间的区间和的前 \(k\) 大之和 \(n\leq5\times10^5,\ k\leq2\times1 ...

  7. python基础杂记

    一.编码 1.ACSII                        0000 0001           8位       一个字节 2. uncoide                     ...

  8. 第二章 Python基本图形绘制

    2.1 深入理解Python语言 Python语言是通用语言 Python语言是脚本语言 Python语言是开源语言 Python语言是跨平台语言 Python语言是多模型语言 Python的特点与优 ...

  9. Luogu P1038 神经网络

    qwq 拓扑排序模板题. 拓扑排序,是在一个$DAG$中,其拓扑排序为其所有结点的一个线性排序(答案不唯一). 该排序满足这样的条件——对于图中的任意两个结点$u$和$v$,若存在一条有向边从$u$指 ...

  10. 记一次在咸鱼上购买 MacBook Pro 的经历

    前言 以前一直用的是 windows 的,但是最近特别想买个 macOS 的.其实不是为了其他什么目的,只是涉及到开发 macOS更接近 linux 系统,一直没使用过所以就想尝试体验下,而且现在很多 ...