这一篇博客只讲splay的前一部分的操作(rotate和splay),后面的一段博客咕咕一段时间

后一半的博客地址:【传送门】

前言骚话

为了学lct我也是拼了,看了十几篇博客,学了将近有一周,才A掉模板题和文艺平衡树
这一片博客就是写了跟我之前有相同处境的小伙伴们。我尽可能的写的简单一点,在带一点自己学习时候的心得和总结。(难免会有一点冗长,大佬勿喷)
吐槽:splay=cosplay=slay(滑稽)
如要转载,请注明出处和作者:https://www.cnblogs.com/chhokmah/p/10577166.html 。作者chhokmah(扒我的图片的时候要和我说一声,不要把水印删掉了,不要吐槽我的图非常丑陋QwQ)。

简要介绍一下splay

splay(伸展树)是一种二叉搜索树。所谓二叉搜索树,又称作二叉查找树,二叉排序树。
二叉搜索树具有以下的性质:如果左树非空,那么左树中所有的节点所代表的权值都小于根节点的权值。同理右子树中所有节点所代表的权值都大于根节点的权值。和二分查找非常的相似,没错就是参照了二分的思路实现了这种数据结构。(话说二分真的好厉害呀QwQ)。
以下这个图片上显示的就是一棵简单的二叉搜索树,接下来我们都用BST(Binary Search Tree)来简写二叉搜索树。

但是还有一个非常极端的情况,请看下图:

上图描述就是所有树形结构都必须要解决的共同问题,退化成一条链,虽然还是保持的是BST的性质,但是我们查询的复杂度就会变成了\(O(n)\),那么很多BST的操作都可以解决这个问题,比如说treap的随机标记,还有我们今天要讲的splay伸展操作。


话说这东西又是tarjan大佬做出来的,太强了。
来自百度百科的描述:它由丹尼尔·斯立特Daniel Sleator 和 罗伯特·恩卓·塔扬Robert Endre Tarjan 在1985年发明的。%%% orz。


update 2019/3/23
感觉还是要明确一下splay的结构体

struct node {
    int val, fa, cnt, sz, ch[2];
    void init(int x, int ft) {
        fa = ft;
        val = x;
        ch[1] = ch[0] = 0;
        sz = cnt = 1;
    }
}

分别解释一下,val表示的是当前节点代表的权值,fa表示这个节点的父亲节点,cnt表示有多少相同的权值,因为在BST中不存在相同的节点,那么就需要把相同的权值都放到相同的节点内,ch[0]和ch[1]分别表示左儿子和右儿子。


Q:为什么很多BST要有旋转(rotate)操作?
A:为了防止出现链的情况,我们需要在保证BST原来的性质的条件下,将BST的结构改掉,这样就不会有链的情况了。
比如说看一下下面这种图片:(给出的样例是Nod是父亲的左儿子,Fa为祖父的左儿子)

天哪我放的有一点快了,但是不影响阅读。我们就将上图左图当做我们现在的BST。
根据BST的性质,容易得出Gf>A>Fa>C>Nod>B。为了改造BST的结构,那么我们就考虑将Nod(当前节点)旋转到父亲节点Fa的位置。
Nod和他的Fa的关系是Nod<Fa,那么如果要让Nod做Fa的父亲的位置,那么Fa一定是Nod的右节点。
因为Fa变成了Nod的一个子节点,那么Gf(祖父节点)的左儿子就变成了Nod节点,说的普遍一点,就是Nod代替了原来自己父亲的位置(大义灭亲)。
再回到Nod原来的子节点,因为维护二叉的性质,那么我们需要让Nod的其中一个儿子变成Fa的儿子。
我们选择了C号节点,因为原来的Nod节点的有儿子就是C节点,而现在被Fa代替掉了。因为C是Nod的子节点,那么C<Fa,因此,C号节点就变成了Fa的左节点,那么原来的B号节点就不需要移动了。
旋转之后得到的就是上面图片的右图,重新审核一下我们图的大小关系。Gf>A>Fa>C>Nod>B,和原来的树是一样的顺序,而且也将原来的那个链的结构改掉了,维护了BST的复杂度。完美؏؏☝ᖗ乛◡乛ᖘ☝؏؏。
还有更多的旋转的情况,以下三种大家可以推一下对照一下是不是这样的:
情况二:Nod是父亲的右节点,Fa是Gf的左节点

情况三:Nod是父亲的左节点,Fa是Gf的右节点

情况四:Nod是父亲的右节点,Fa是Gf的右节点


作为一个合格oier,代码还是需要写的。我们先整理一下rotate旋转操作的思路吧。
先针对nod节点,我们可以发现nod节点在每一幅图中都有一个节点是不变的,反观我们之前推导的Fa变成nod节点的其中一个子节点可得,nod是fa的哪一个节点,那么nod的哪一个节点就不会改变。另外一个节点就变成了fa的另一个节点。
那么nod节点本身就会变成Gf的一个子节点。
总结一下过程:
1.nod变到原来fa的位置
2.fa变成了 nod原来在fa的 相对的那个儿子
3.fa的非nod的儿子不变 nod的 nod原来在fa的 那个儿子不变
4.nod的 nod原来在fa的 相对的 那个儿子 变成了 fa原来是nod的那个儿子。

给出代码

void rotate(int nod) {
        int fa = tr[nod].fa, gf = tr[fa].fa, k = tr[fa].ch[1] == nod;//fa和gf都是上面提到的意思
        tr[gf].ch[tr[gf].ch[1] == fa] = nod;//先把fa原来的位置变成nod
        tr[nod].fa = gf;//更新父亲
        tr[fa].ch[k] = tr[nod].ch[k ^ 1];//nod的与nod原来在fa的相对的那个儿子变成fa的儿子
        tr[tr[nod].ch[k ^ 1]].fa = fa;//更新父亲
        tr[nod].ch[k ^ 1] = fa;//nod的 与nod原来相对位置的儿子变成 fa
        tr[fa].fa = nod;//更新父亲
    }

接下来就是splay操作,沃觉得splay操作有两个用处:

  • 将某一个节点提到某一个位置
  • 维护树的复杂度,这个复杂度指的是查询等其他操作时的时间复杂度。

我们思考一个问题,如果我们需要把一个节点提到某一个需要的位置,也许就是根节点,需要怎么操作。
第一次我想到的就是,不断向上旋转,但是这样是错误的,会T到爆炸。
请看一下下面的图:(这个图实在是太丑了)

还有一个动态图

把一个点双旋到根,可以使得从根到它的路径上的所有点的深度变为大约原来的一半,其它点的深度最多增加2
很明显,我们旋转过后,虽然节点编号之间的顺序发生了变化,但是这条链还依旧是存在的,动态图中更加明显。
为了解决这个问题,我们需要修改一下splay操作,加入判断是否儿子节点是否相同。

  • nod和fa分别是fa和gf的同一个儿子
  • nod和fa不是fa和gf的同一个儿子

那么对于第一种操作就是先旋转fa,在旋转nod
第二种操作是旋转两遍nod。

代码说话

void splay(int nod, int goal) {//goal表目标节点
    while (tr[nod].fa != goal) {
        int fa = tr[nod].fa, gf = tr[fa].fa;
        if (gf != goal) {
            if ((tr[gf].ch[0] == fa) ^ (tr[fa].ch[0] == nod)) rotate(nod);
            else rotate(fa);
        }
        rotate(nod);//再次旋转
    }
    if (goal == 0) rt = nod;//如果目标节点是0,那么就把根节点变成nod节点
}

平衡树splay学习笔记#1的更多相关文章

  1. 平衡树splay学习笔记#2

    讲一下另外的所有操作(指的是普通平衡树中的其他操作) 前一篇的学习笔记连接:[传送门],结尾会带上完整的代码. 操作1,pushup操作 之前学习过线段树,都知道子节点的信息需要更新到父亲节点上. 因 ...

  2. 文艺平衡树 Splay 学习笔记(1)

    (这里是Splay基础操作,reserve什么的会在下一篇里面讲) 好久之前就说要学Splay了,结果苟到现在才学习. 可能是最近良心发现自己实在太弱了,听数学又听不懂只好多学点不要脑子的数据结构. ...

  3. 【洛谷P3369】普通平衡树——Splay学习笔记(一)

    二叉搜索树(二叉排序树) 概念:一棵树,若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 它的左.右子树也分别为二叉搜索树 ...

  4. 【洛谷P3391】文艺平衡树——Splay学习笔记(二)

    题目链接 Splay基础操作 \(Splay\)上的区间翻转 首先,这里的\(Splay\)维护的是一个序列的顺序,每个结点即为序列中的一个数,序列的顺序即为\(Splay\)的中序遍历 那么如何实现 ...

  5. [Splay][学习笔记]

    胡扯 因为先学习的treap,而splay与treap中有许多共性,所以会有很多地方不会讲的很细致.关于treap和平衡树可以参考这篇博客 关于splay splay,又叫伸展树,是一种二叉排序树,它 ...

  6. [Note]Splay学习笔记

    开个坑记录一下学习Splay的历程. Code 感谢rqy巨佬的代码,让我意识到了Splay可以有多短,以及我之前的Splay有多么的丑... int fa[N], ch[N][2], rev[N], ...

  7. splay学习笔记

    伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.(来自百科) 伸展树的操作主要是 –rotate(x) 将x旋转到x的父亲的位置 voi ...

  8. Treap-平衡树学习笔记

    平衡树-Treap学习笔记 最近刚学了Treap 发现这种数据结构真的是--妙啊妙啊~~ 咳咳.... 所以发一发博客,也是为了加深蒟蒻自己的理解 顺便帮助一下各位小伙伴们 切入正题 Treap的结构 ...

  9. [学习笔记]平衡树(Splay)——旋转的灵魂舞蹈家

    1.简介 首先要知道什么是二叉查找树. 这是一棵二叉树,每个节点最多有一个左儿子,一个右儿子. 它能支持查找功能. 具体来说,每个儿子有一个权值,保证一个节点的左儿子权值小于这个节点,右儿子权值大于这 ...

随机推荐

  1. C# Tostring()方法

    在C#中 JArray japroimg = new JArray(); strproimg.ToString();这样会导致tostring之后的字符串中会有大量的空格 使用  japroimg.T ...

  2. SQL根据细粒度为天的查询

    当我们集成了一些前端框架,在某些展示页面上往往具有某些查询条件.而这其中日期查询的处理又较为麻烦,此处,我罗列了一种当前台上传了一种默认的date格式的日期查询数据至后台未经Controller或Se ...

  3. 前后端分离djangorestframework——解决跨域请求

    跨域 什么是跨域 比如一个链接:http://www.baidu.com(端口默认是80端口), 如果再来一个链接是这样:http://api.baidu.com,这个就算是跨域了(因为域名不同) 再 ...

  4. JAVA 递归实现从n个数中选取m个数的所有组合

    这周Java课程有个小作业:Java递归实现从n个数中选取m个数的所有组合 代码如下: //其中 n 取 1,2,3,4,5 五个数, m 取 3 package javaText; public c ...

  5. 能ping通虚拟机,但snmp报文 Destination unreachable(Host administratively prohibited

    如题目,使用virtual box 虚拟机,虚拟机系统为centos6.5, 主机系统为win10 内外设置ip在同一网段后,互相能ping通,centos 系统开启snmp服务,此处说明以下, sn ...

  6. 【Linux基础】查看硬件信息-系统

    1.查看计算机名 hostname 2.查看内核/操作系统/CPU信息 uname -a   4.查看操作系统版本(Linux) head -n 2 /etc/issue Red Hat Enterp ...

  7. Vuex初级入门及简单案例

    1.为什么要使用Vuex? (1)方便所有组件共享信息,方便不同组件共享信息. (2)某个组件需要修改状态和需求.   2.状态有哪些? (1)组件内部定义的data状态(通过组件内部修改) (2)组 ...

  8. pybind11 安装

    Prerequisites: $ sudo apt-get install python-dev  (or python3-dev) $ sudo apt-get install cmake $ su ...

  9. 通过C#学Proto.Actor模型》之Remote

    Proto.Actor中提供了基于tcp/ip的通迅来实现Remote,可以通过其Remot实现对Actor的调用. 先来看一个极简单片的远程调用. 码友看码: 引用NuGet包 Proto.Acto ...

  10. 《通过C#学Proto.Actor模型》之PID

    PID对象是代表Actor对象的进程,是能过Actor.Spawn(props)获取的:它有什么成员呢?既然代理Actor,首先有一个ID,标识自己是谁,Actor在Spawn时可以命名这个ID,否则 ...