Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
#include<vector>
#include<iomanip>
#include<iostream>
using namespace std;
#define MAXN 101
#define INF 0x3f3f3f3f
/*
判断最小生成树是否唯一。
求次小生成树,若两个权值相等说明not unique
次小生成树算法,在prim()算法求解的时候,求出MST中u到v最大边权值
,然后用不在MST中的边依次枚举取最小值
*/
int g[MAXN][MAXN],Max[MAXN][MAXN],lowcost[MAXN],pre[MAXN],n,m,t;
bool used[MAXN][MAXN],been[MAXN];
int Prim()
{
int ret = ;
memset(been,false,sizeof(been));
memset(Max,,sizeof(Max));
memset(used,false,sizeof(used));
been[] = true;
pre[] = -;
for(int i=;i<=n;i++)
{
pre[i] = ;
lowcost[i] = g[][i];
}
lowcost[] = ;
for(int i=;i<n;i++)
{
int minc = INF,k =- ;
for(int j=;j<=n;j++)
{
if(!been[j]&&lowcost[j]<minc)
{
minc = lowcost[j];
k = j;
}
}
if(k==-) return -;
been[k] = true;
ret+=minc;
used[k][pre[k]] = used[pre[k]][k] = true;
for(int j=;j<=n;j++)
{
if(been[j])
Max[j][k] = Max[k][j] = max(Max[j][pre[k]],lowcost[k]);
if(!been[j]&&lowcost[j]>g[k][j])
{
lowcost[j] = g[k][j];
pre[j] = k;
}
}
}
return ret;
}
int cixiao(int ans)
{
int tmp = INF;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(!used[i][j]&&g[i][j]!=INF)
tmp = min(tmp,ans-Max[i][j]+g[i][j]);
}
if(tmp==INF)
return -;
return tmp;
}
int main()
{
cin>>t;
while(t--)
{
cin>>n>>m;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
g[i][j] = INF;
}
int x,y,d;
for(int t=;t<m;t++)
{
cin>>x>>y>>d;
g[x][y] = g[y][x] = d;
}
int ans = Prim();
int tmp = cixiao(ans);
if(tmp==ans||ans==-)
cout<<"Not Unique!\n";
else
cout<<ans<<endl;
}
return ;
}

次小生成树 判断 unique MST的更多相关文章

  1. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  2. POJ-1679 The Unique MST(次小生成树、判断最小生成树是否唯一)

    http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its minimum s ...

  3. The Unique MST(次小生成树)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22335   Accepted: 7922 Description Give ...

  4. poj 1679 The Unique MST【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24034   Accepted: 8535 D ...

  5. poj 1679 判断MST是不是唯一的 (次小生成树)

    判断MST是不是唯一的 如果是唯一的 就输出最小的权值和 如果不是唯一的 就输出Not Unique! 次小生成树就是第二小生成树  如果次小生成树的权值和MST相等  那么MST就不是唯一的 法一: ...

  6. POJ 1679 The Unique MST (次小生成树)题解

    题意:构成MST是否唯一 思路: 问最小生成树是否唯一.我们可以先用Prim找到一棵最小生成树,然后保存好MST中任意两个点i到j的这条路径中的最大边的权值Max[i][j],如果我们能找到一条边满足 ...

  7. POJ_1679_The Unique MST(次小生成树)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  8. POJ 1679 The Unique MST 【最小生成树/次小生成树模板】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  9. poj 1679 The Unique MST 【次小生成树+100的小数据量】

    题目地址:http://poj.org/problem?id=1679 2 3 3 1 2 1 2 3 2 3 1 3 4 4 1 2 2 2 3 2 3 4 2 4 1 2 Sample Outpu ...

随机推荐

  1. Coding Pages 服务与万网域名的配置

    1071220 http://support.huawei.com/learning/NavigationAction!createNavi?navId=MW000001_term1000190292 ...

  2. MySQL的两种存储引擎storage engine特点和对比

    MyISAM 优点:快速读取数据, 占用空间小 缺点:不支持事务,外键 (表级别锁) InnoDB 优点:支持事务,外键; 高性能(CPU效率高) 缺点: 慢,占空间 (行级别锁)

  3. MySQL与MongoDB的操作对比

    MySQL与MongoDB都是开源的常用数据库,但是MySQL是传统的关系型数据库,MongoDB则是非关系型数据库,也叫文档型数据库,是一种NoSQL的数据库.它们各有各的优点,关键是看用在什么地方 ...

  4. 全3D模具设计自动化解決方案

  5. Socket编程的简单实现

    关于socket编程的简单实现,主要分成客户端.服务端两个部分.实现如下: 1.服务端代码如下,注意:server端要优先于client端启动 2.client端代码,以及启动后客户端和服务端之间的简 ...

  6. (转)淘淘商城系列——使用Spring来管理Redis单机版和集群版

    http://blog.csdn.net/yerenyuan_pku/article/details/72863323 我们知道Jedis在处理Redis的单机版和集群版时是完全不同的,有可能在开发的 ...

  7. 梦想MxWeb3D协同设计平台 2019.01.24更新

    SDK开发包下载地址:http://www.mxdraw.com/ndetail_10124.html1.  编写快速入门教程2.  重构前端代码,支持一个页面多个三维控件同时加载,或二维和三维同时加 ...

  8. freemarker使用map替换ftl中相关值

    ftl文件demo01.ftl <html> <head> <title>Welcome!</title> </head> <body ...

  9. contab的使用方法

    linux 系统则是由 cron (crond) 这个系统服务来控制的.Linux 系统上面原本就有非常多的计划性工作,因此这个系统服务是默认启动的.另 外, 由于使用者自己也可以设置计划任务,所以, ...

  10. eBPF监控工具bcc系列五工具funccount

    eBPF监控工具bcc系列五工具funccount funccount函数可以通过匹配来跟踪函数,tracepoints 或USDT探针.例如所有以vfs_ 开头的内核函数. ./funccount ...