Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
#include<vector>
#include<iomanip>
#include<iostream>
using namespace std;
#define MAXN 101
#define INF 0x3f3f3f3f
/*
判断最小生成树是否唯一。
求次小生成树,若两个权值相等说明not unique
次小生成树算法,在prim()算法求解的时候,求出MST中u到v最大边权值
,然后用不在MST中的边依次枚举取最小值
*/
int g[MAXN][MAXN],Max[MAXN][MAXN],lowcost[MAXN],pre[MAXN],n,m,t;
bool used[MAXN][MAXN],been[MAXN];
int Prim()
{
int ret = ;
memset(been,false,sizeof(been));
memset(Max,,sizeof(Max));
memset(used,false,sizeof(used));
been[] = true;
pre[] = -;
for(int i=;i<=n;i++)
{
pre[i] = ;
lowcost[i] = g[][i];
}
lowcost[] = ;
for(int i=;i<n;i++)
{
int minc = INF,k =- ;
for(int j=;j<=n;j++)
{
if(!been[j]&&lowcost[j]<minc)
{
minc = lowcost[j];
k = j;
}
}
if(k==-) return -;
been[k] = true;
ret+=minc;
used[k][pre[k]] = used[pre[k]][k] = true;
for(int j=;j<=n;j++)
{
if(been[j])
Max[j][k] = Max[k][j] = max(Max[j][pre[k]],lowcost[k]);
if(!been[j]&&lowcost[j]>g[k][j])
{
lowcost[j] = g[k][j];
pre[j] = k;
}
}
}
return ret;
}
int cixiao(int ans)
{
int tmp = INF;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(!used[i][j]&&g[i][j]!=INF)
tmp = min(tmp,ans-Max[i][j]+g[i][j]);
}
if(tmp==INF)
return -;
return tmp;
}
int main()
{
cin>>t;
while(t--)
{
cin>>n>>m;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
g[i][j] = INF;
}
int x,y,d;
for(int t=;t<m;t++)
{
cin>>x>>y>>d;
g[x][y] = g[y][x] = d;
}
int ans = Prim();
int tmp = cixiao(ans);
if(tmp==ans||ans==-)
cout<<"Not Unique!\n";
else
cout<<ans<<endl;
}
return ;
}

次小生成树 判断 unique MST的更多相关文章

  1. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  2. POJ-1679 The Unique MST(次小生成树、判断最小生成树是否唯一)

    http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its minimum s ...

  3. The Unique MST(次小生成树)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22335   Accepted: 7922 Description Give ...

  4. poj 1679 The Unique MST【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24034   Accepted: 8535 D ...

  5. poj 1679 判断MST是不是唯一的 (次小生成树)

    判断MST是不是唯一的 如果是唯一的 就输出最小的权值和 如果不是唯一的 就输出Not Unique! 次小生成树就是第二小生成树  如果次小生成树的权值和MST相等  那么MST就不是唯一的 法一: ...

  6. POJ 1679 The Unique MST (次小生成树)题解

    题意:构成MST是否唯一 思路: 问最小生成树是否唯一.我们可以先用Prim找到一棵最小生成树,然后保存好MST中任意两个点i到j的这条路径中的最大边的权值Max[i][j],如果我们能找到一条边满足 ...

  7. POJ_1679_The Unique MST(次小生成树)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  8. POJ 1679 The Unique MST 【最小生成树/次小生成树模板】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  9. poj 1679 The Unique MST 【次小生成树+100的小数据量】

    题目地址:http://poj.org/problem?id=1679 2 3 3 1 2 1 2 3 2 3 1 3 4 4 1 2 2 2 3 2 3 4 2 4 1 2 Sample Outpu ...

随机推荐

  1. win10家庭版添加本地账户方法

    1.正常情况下,windows的使用者都习惯于用本地用户及用户组工具来创建新用户,如下图所示,在win10的开始窗口右侧的空白处,输入lusrmgr.msc 打开本地用户管理控制台. 2.在win10 ...

  2. 51nod1344 走格子

    1344 走格子 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 有编号1-n的n个格子,机器人从1号格子顺序向后走,一直走到n号格子,并需要从n号格 ...

  3. scala学习笔记3:基本控制结构基础

    以下主要记录的是看完scala in programming这本书buildin control structures(第七章)后的要点总结. 1,if,while,do while和for的用法和j ...

  4. C#基础 集合

    //数组定义的时候 //需要定义数据类型 //需要定义初始长度 //int [] array = new int[5]; //int a = array.Length; //集合 //ArrayLis ...

  5. log4j建立propertie后要建立log4j2.xml

    log4j.properties ### \u8BBE\u7F6E### log4j.rootLogger = debug,stdout,D,E ### \u8F93\u51FA\u4FE1\u606 ...

  6. php函数的声明与使用

    function 函数名(){ 函数体 } 一个函数是由3部分组成:声明(function 关键字).函数名(用来找到函数体的).函数体(封装的代码) 2.函数的优越性 代码重用性强.维护方便.提高开 ...

  7. scla-基础-函数-元组(0)

    //元组 class Demo2 extends TestCase { def test_create_^^(){ val yuana = (1,true,1.2,"c",&quo ...

  8. C++中图片重命名

    非常简单的小程序,满足自己的需求. #include <iostream> #include <fstream> #include<sstream> using n ...

  9. 2017-11-28 Html-浅谈如何正确给table加边框

    一般来说,给表格加边框都会出现不同的问题,以下是给表格加边框后展现比较好的方式 <style> table,table tr th, table tr td { border:1px so ...

  10. Tornado引入静态css、js文件

    一.静态路径 template_path=os.path.join(os.path.dirname(__file__), "templates") 这里是设置了模板的路径,放置模板 ...