如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0

所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=45;
int n,m,f[N][N][N],a[N][N],ans[N][N];
void gaosi()
{
for(int i=1;i<=m;i++)
{
int nw=i;
while(!a[nw][i]&&nw<=m)
nw++;
if(nw>m)
continue;
if(nw!=i)
for(int k=1;k<=m;k++)
swap(a[nw][k],a[i][k]);
for(int j=1;j<=m;j++)
if(j!=i&&a[j][i])
for(int k=1;k<=m;k++)
a[j][k]^=a[i][k];
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
f[1][i][i]=1;
for(int i=2;i<=n+1;i++)
for(int j=1;j<=m;j++)
for(int k=1;k<=m;k++)
f[i][j][k]=f[i-1][j-1][k]^f[i-1][j][k]^f[i-1][j+1][k]^f[i-2][j][k];
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
a[i][j]=f[n+1][i][j];
gaosi();
for(int i=m;i>=1;i--)
{
if(!a[i][i])
ans[1][i]=1;
else
for(int j=i+1;j<=m;j++)
if(a[i][j])
ans[1][i]^=ans[1][j];
}
for(int i=2;i<=n;i++)
for(int j=1;j<=m;j++)
ans[i][j]=ans[i-1][j]^ans[i-1][j-1]^ans[i-1][j+1]^ans[i-2][j];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
printf("%d ",ans[i][j]);
puts("");
}
return 0;
}

bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】的更多相关文章

  1. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  2. BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...

  3. P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)

    题意:构造一个$n*m$矩阵 使得每个元素和上下左右的xor值=0 题解:设第一行的每个元素值为未知数 可以依次得到每一行的值 然后把最后一行由题意条件 得到$m$个方程 高斯消元解一下 bitset ...

  4. BZOJ 3503 [CQOI2014]和谐矩阵

    题目链接 BZOJ 3503 题解 没想到--直接用暴力的\(O((nm)^3)\)算法,居然能过?! 高斯消元解异或方程组. #include <cstdio> #include < ...

  5. 3503: [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...

  6. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  7. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  8. BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算

    BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...

  9. 矩阵&&高斯消元

    矩阵运算: \(A\times B\)叫做\(A\)左乘\(B\),或者\(B\)右乘\(A\). 行列式性质: \(1.\)交换矩阵的两行(列),行列式取相反数. \(2.\)某一行元素都\(\ti ...

随机推荐

  1. 从零开始写STL - 智能指针

    从零开始写STL - 智能指针 智能指针的分类及其特点: scoped_ptr:初始化获得资源控制权,在作用域结束释放资源 shared_ptr: 引用计数来控制共享资源,最后一个资源的引用被释放的时 ...

  2. T2627 村村通 codevs

    http://codevs.cn/problem/2627/  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 黄金 Gold 题目描述 Description 农民约翰被选为他们 ...

  3. POJ 1511 【heap+dij】

    题意: t组样例. 每组有n个节点,有m条单向边. 有m组输入,每组a b c 表示从a到b的单向边的权值是c. 求解,从编号为1的节点出发,有n-1个人,要求他们分别到达编号从2到n的节点再返回,所 ...

  4. 寒武纪camp网络测试赛

    寒武纪camp网络测试赛 地址:oj点我进入 A(树形dp+树链剖分) 题意: 分析: 考虑树形dp,f0(x)和f1(x)分别表示以x为根的子树,不取x点或取x点的最大合法子集的元素个数 那么对于一 ...

  5. maven之发布项目到nexus【clean deploy命令】

    原文:http://m.blog.csdn.net/article/details?id=49667971 当我们的项目开发完成以后,可能要进行发布(如果是独立的项目,就不需要发布啦,如果是模块项目, ...

  6. Linux源代码分析工具-Source Insight

    下载地址:http://www.sourceinsight.com/down35.html 可用注冊码:SI3US-205035-36448 使用说明:http://wenku.baidu.com/v ...

  7. Structual设计--Bridge模式

    1.意图 将抽象部分与它的实现部分分离.使他们都能够独立地变化. 2.别名 Handle/Body 3.动机 当一个抽象对象可能有多个实现时,通经常使用继承来协调它们.抽象类定义对该抽象的接口.而详细 ...

  8. 在DIV中自己主动换行

    word-break:break-all和word-wrap:break-word都是能使其容器如DIV的内容自己主动换行. 它们的差别就在于: 1,word-break:break-all 比如di ...

  9. ASP.NET MVC 学习笔记-7.自定义配置信息 ASP.NET MVC 学习笔记-6.异步控制器 ASP.NET MVC 学习笔记-5.Controller与View的数据传递 ASP.NET MVC 学习笔记-4.ASP.NET MVC中Ajax的应用 ASP.NET MVC 学习笔记-3.面向对象设计原则

    ASP.NET MVC 学习笔记-7.自定义配置信息   ASP.NET程序中的web.config文件中,在appSettings这个配置节中能够保存一些配置,比如, 1 <appSettin ...

  10. Yii2 mongodb 扩展的where的条件增加大于 小于号

    1. mongodb的where中有比較丰富的 条件.例如以下: static $builders = [ 'NOT' => 'buildNotCondition', 'AND' => ' ...