2427: [HAOI2010]软件安装

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1053  Solved: 424
[Submit][Status][Discuss]

Description

现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

Input

第1行:N, M  (0<=N<=100, 0<=M<=500)
      第2行:W1, W2, ... Wi, ..., Wn (0<=Wi<=M )
      第3行:V1, V2, ..., Vi, ..., Vn  (0<=Vi<=1000 )
      第4行:D1, D2, ..., Di, ..., Dn (0<=Di<=N, Di≠i )

Output

一个整数,代表最大价值。

Sample Input

3 10
5 5 6
2 3 4
0 1 1

Sample Output

HINT

 

Source

Day2

/*
开始一看这不是个基础的树型动规吗?(知道基础,但我不会啊),但是一看还有环嘞,苦逼了...
根据依赖关系可以画出来一张图,有三种可能的情况:
1.依赖关系构成一棵树。
2.依赖关系构成一个环。
3.依赖关系构成一个环下面吊着一棵树。
因为有2,3这些情况,所以要先有tarjan预处理一下,缩环为点,重新建图。
对于建好的图,跑一边树形背包即可,思想类似于01背包
f[x][tot]表示以x为根,容量为tot的最大收益。把x的各个子树看成物品
再枚举每个子树所分给的容量,tot从大到小转移。
*/
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std;
int n,m,cnt,scc,ind,top,num;
int v[],w[];
int sv[],sw[];bool in_stack[];
int dfn[],low[],belong[];
int stack[],f[][],in[],head[],head2[];
struct node
{
int from;
int to;
int next;
}e[],e2[]; inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} inline void insert(int from,int to)
{
e[++num].from=from;
e[num].to=to;
e[num].next=head[from];
head[from]=num;
} inline void insert2(int from,int to)
{
in[to]=;
e2[++num].from=from;
e2[num].to=to;
e2[num].next=head2[from];
head2[from]=num;
} void Tarjan(int u)
{
int now=;
dfn[u]=low[u]=++ind;
stack[++top]=u;
in_stack[u]=;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(in_stack[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc++;
while(now!=u)//统计环
{
now=stack[top--];in_stack[now]=;
belong[now]=scc;
sw[scc]+=w[now];
sv[scc]+=v[now];
}
}
}
void rebuild()//重建图
{
num=;
for(int x=;x<=n;x++)
for(int i=head[x];i;i=e[i].next)
{
int v=e[i].to;
if(belong[v]!=belong[x])
insert2(belong[x],belong[v]);
}
}
void dp(int x)
{
for(int i=head2[x];i;i=e2[i].next)
{
dp(e2[i].to);
for(int j=m-sw[x];j>=;j--)
{
for(int k=;k<=j;k++)//枚举子树的的限制。
f[x][j]=max(f[x][j],f[x][k]+f[e2[i].to][j-k]);
}
}
for(int j=m;j>=;j--)//完全背包
{
if(j>=sw[x])f[x][j]=f[x][j-sw[x]]+sv[x];
else f[x][j]=;
}
} int main()
{
n=read();m=read();
for(int i=;i<=n;i++)w[i]=read();
for(int i=;i<=n;i++)v[i]=read();
for(int i=;i<=n;i++)
{
int x=read();
if(x)insert(x,i);
}
for(int i=;i<=n;i++)
if(!dfn[i])Tarjan(i);
rebuild();
for(int i=;i<=scc;i++)
if(!in[i])
insert2(scc+,i);//这个地方要加1,因为根节点属于新的环。(不确定)
dp(scc+);
printf("%d\n",f[scc+][m]);
return ;
}

bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)的更多相关文章

  1. [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1987  Solved: 791[Submit][Statu ...

  2. [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp

    <题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...

  3. BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包

    分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...

  4. [BZOJ2427][HAOI2010]软件安装(tarjan+树形DP)

    如果依赖关系出现环,那么对于一个环里的点,要么都选要么都不选, 所以每个环可以当成一个点,也就是强连通分量 然后就可以构造出一颗树,然后树形背包瞎搞一下就行了 注意要搞一个虚拟节点当根节点 Code ...

  5. 【BZOJ2427】[HAOI2010]软件安装 Tarjan+树形背包

    [BZOJ2427][HAOI2010]软件安装 Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为 ...

  6. 【BZOJ-2427】软件安装 Tarjan + 树形01背包

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 960  Solved: 380[Submit][Status ...

  7. bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp

    [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2029  Solved: 811[Submit][Status][Dis ...

  8. 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...

  9. bzoj2427: [HAOI2010]软件安装

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

随机推荐

  1. Python,subprocess模块(补充)

    1.subprocess模块,前戏 res = os.system('dir') 打印到屏幕,res为0或非0 os.popen('dir') 返回一个内存对象,相当于文件流 a = os.popen ...

  2. AWK简单使用方法

    1. 命令格式 gawk [OPTIONS] 'program' FILES.... program:'PATTERN{ACTION}' 一条awk命令中,PATTERN和ACTION,至少存在一个才 ...

  3. Servlet监听器的使用

    Servlet监听器的使用 制作人:全心全意 在Servlet技术中已经定义了一些事件,并且可以针对这些事件来编写相关的事件监听器,从而对事件做出相应的处理.例如,想要在Web应用程序启动和关闭时来执 ...

  4. L2-012. 关于堆的判断(STL中heap)

    L2-012. 关于堆的判断   将一系列给定数字顺序插入一个初始为空的小顶堆H[].随后判断一系列相关命题是否为真.命题分下列几种: “x is the root”:x是根结点: “x and y ...

  5. [bzoj1042][HAOI2008][硬币购物] (容斥原理+递推)

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...

  6. Android三角标签View:TriangleLabelView

     Android三角标签View:TriangleLabelView 在一些商城.产品推销类APP中,如淘宝.京东.电影门票销售.商品降价促销这类的APP,常常会在其APP中看到,某些商品的左上角 ...

  7. HDU 4451 容斥原理

    题目大意: n件衣服,m条裤子,k双鞋子进行搭配 妈妈指明了哪些衣服和裤子不能搭配,哪些裤子和鞋子不能搭配,问最后有几种搭配方法 先假设都能搭配 n*m*k 每次遇到衣服和裤子不能搭的,就要减一次k, ...

  8. codevs1031 质数环

    一个大小为N(N<=17)的质数环是由1到N共N个自然数组成的一个数环,数环上每两个相邻的数字之和为质数.如下图是一个大小为6的质数环.为了方便描述,规定数环上的第一个数字总是1.如下图可用1 ...

  9. spring-quartz定时器简单用法

    基本配置: 1.quartz.properties #============================================================== #Configure ...

  10. Docker website

    https://github.com/docker/labs/  (nguo123gmail  Cooooos123!) Docker Tutorials and Labs At this time ...