题目描述

小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。

输入

输入文件第一行有且只有一个正整数T,表示测试数据的组数。 对于每组测试数据, 第一行包含两个整数n,m,表示图的点数和边数。 下面m行,每行3个正整数u,v,c(1<=u,v<=n,0<=c<=106),表示有一条权为c的无向边(u,v) 接下来一行,包含一个整数q,表示询问的个数 下面q行,每行一个整数x,其含义同题目描述。

输出

对于每组测试数据,输出应包括q行,第i行表示第i个问题的答案。对于点对(p,q)和(q,p),只统计一次(见样例)。

两组测试数据之间用空行隔开。

样例输入

1
5 0
1
0

样例输出

10


题解

分治+网络流最小割

根据某些奇奇怪怪的定理,最小割最多只有n-1个。

那么我们只需要分治寻找这些最小割即可。

我们对于每次的点集,在其中任选两个为源点和汇点,求最小割,并更新任意两点之间最小割的答案。然后,把这些点集根据割开的S集合和T集合分成两个点集,再向下递归查询即可。

这样做能够保证每次的最小割都不同,就找到了n-1个最小割。

求最小割之后不需要再进行dfs,直接利用dis数组即可判断某点所在的集合。

最后把两点之间最小割拿出来排个序,再二分查找即可。

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define N 200
#define M 20000
using namespace std;
queue<int> q;
int n , head[N] , to[M] , val[M] , next[M] , cnt , s , t , dis[N] , ans[N][N] , a[N] , tmp[N] , v[M] , tot;
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = z , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
void solve(int l , int r)
{
if(l >= r) return;
int i , j , sum = 0 , p1 , p2;
for(i = 2 ; i <= cnt ; i += 2) val[i] = val[i ^ 1] = (val[i] + val[i ^ 1]) >> 1;
s = a[l] , t = a[r];
while(bfs()) sum += dinic(s , 1 << 30);
for(i = 1 ; i <= n ; i ++ )
if(dis[i])
for(j = 1 ; j <= n ; j ++ )
if(!dis[j])
ans[i][j] = ans[j][i] = min(ans[i][j] , sum);
for(p1 = i = l , p2 = r ; i <= r ; i ++ )
{
if(dis[a[i]]) tmp[p1 ++ ] = a[i];
else tmp[p2 -- ] = a[i];
}
for(i = l ; i <= r ; i ++ ) a[i] = tmp[i];
solve(l , p2) , solve(p1 , r);
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(head , 0 , sizeof(head)) , cnt = 1 , memset(ans , 0x7f , sizeof(ans)) , tot = 0;
int m , i , j , x , y , z , k;
scanf("%d%d" , &n , &m);
while(m -- ) scanf("%d%d%d" , &x , &y , &z) , add(x , y , z);
for(i = 1 ; i <= n ; i ++ ) a[i] = i;
solve(1 , n);
for(i = 1 ; i <= n ; i ++ )
for(j = i + 1 ; j <= n ; j ++ )
v[++tot] = ans[i][j];
sort(v + 1 , v + tot + 1);
scanf("%d" , &k);
while(k -- )
{
scanf("%d" , &x);
if(x >= v[tot]) printf("%d\n" , tot);
else printf("%d\n" , upper_bound(v + 1 , v + tot + 1 , x) - v - 1);
}
if(T) printf("\n");
}
return 0;
}

【bzoj2229】[Zjoi2011]最小割 分治+网络流最小割的更多相关文章

  1. [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割

    题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...

  2. 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)

    [BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...

  3. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

  4. 最小割分治(最小割树):BZOJ2229 && BZOJ4519

    定理:n个点的无向图的最小割最多n-1个. 可能从某种形式上形成了一棵树,不是很清楚. 最小割分治:先任选两个点求一边最小割,然后将两边分别递归,就能找到所有的最小割. 这两个题是一样的,直接搬din ...

  5. BZOJ2229: [Zjoi2011]最小割

    题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...

  6. bzoj千题计划139:bzoj2229: [Zjoi2011]最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...

  7. BZOJ2229[Zjoi2011]最小割——最小割树

    题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...

  8. 【bzoj4519】[Cqoi2016]不同的最小割 分治+最小割

    题目描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将所有顶点处在不同 ...

  9. ACM/ICPC 之 最小割转网络流(POJ3469)

    重点:构图 //最小割转网络流 //邻接表+Dinic //Time:5797Ms Memory:6192K #include<iostream> #include<cstring& ...

随机推荐

  1. sysbench0.5安装和使用介绍

    sysbench是一个模块化的.跨平台.多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况,sysbench支持MySQL.PostgreSQL.Oracle数据库OLTP测试.它 ...

  2. C# 一维数组 二位数组 多维数组

    什么是数组? 数组是一组变量,就是把一些变量串在一起,放在一块. 数组的作用? 假设有一堆变量,每个变量都有一些程序,那么这堆程序放在一起  程序就会混乱,处理起来有些麻烦,那么数组就是把这些变量放在 ...

  3. C# 语句 分支语句

    语句是指程序命令,按照顺序执行.可以分为   顺序语句  分支语句  循环语句 之前学习的内容都是按照顺序程序执行的,称之为顺序语句. 今天学的的内容是分支语句. 语句可以嵌套,可以是以分号结尾的单行 ...

  4. -[UPAInitViewController startAPPay] in libUPAPayPlugin.a(UPAInitViewController.o)

    问题 Undefined symbols for architecture arm64: "_PKPaymentNetworkChinaUnionPay", referenced ...

  5. ant design table td 文字显示过长添加省略号、ant 文字过长时添加tootip提示

    方法1: overflow: hidden; text-overflow: ellipsis; display: -webkit-box; -webkit-line-clamp: 2; -webkit ...

  6. WebStorm 编辑器 关闭自动保存功能及添加*星星标记

    WebStorm 关闭自动保存功能添加*星星标记为什么要关闭自动保存?      ​ 在前端项目工作当中,往往会采用自动化环境(Gulp.webpack等)当文本发生变化的时候就会自动编译代码.在we ...

  7. bootstrap历练实例:标签式的导航菜单

    本章将讲解bootstrap提供的用于定义导航元素的一些选项,它使用相同的标签和基类.nav.Bootsrtap也提供了一个用于共享标记和状态的帮助器类.改变修饰的class,可以在不同的样式间进行切 ...

  8. Quartz监听的端口

    上海移通短信网关:556重庆移动短信网关:557消息中心后台维护服务:558网页订单数据同步服务:559基础数据同步程序:560短信数据扣除服务:565基础数据维护服务:589推送数据抓取服务:222 ...

  9. Apache Commons Configuration的应用

    Apache Commons Configuration的应用 Commons Configuration是一个java应用程序的配置管理工具.可以从properties或者xml文件中加载软件的配置 ...

  10. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...