【bzoj2229】[Zjoi2011]最小割 分治+网络流最小割
题目描述
小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。
输入
输入文件第一行有且只有一个正整数T,表示测试数据的组数。 对于每组测试数据, 第一行包含两个整数n,m,表示图的点数和边数。 下面m行,每行3个正整数u,v,c(1<=u,v<=n,0<=c<=106),表示有一条权为c的无向边(u,v) 接下来一行,包含一个整数q,表示询问的个数 下面q行,每行一个整数x,其含义同题目描述。
输出
对于每组测试数据,输出应包括q行,第i行表示第i个问题的答案。对于点对(p,q)和(q,p),只统计一次(见样例)。
两组测试数据之间用空行隔开。
样例输入
1
5 0
1
0
样例输出
10
题解
分治+网络流最小割
根据某些奇奇怪怪的定理,最小割最多只有n-1个。
那么我们只需要分治寻找这些最小割即可。
我们对于每次的点集,在其中任选两个为源点和汇点,求最小割,并更新任意两点之间最小割的答案。然后,把这些点集根据割开的S集合和T集合分成两个点集,再向下递归查询即可。
这样做能够保证每次的最小割都不同,就找到了n-1个最小割。
求最小割之后不需要再进行dfs,直接利用dis数组即可判断某点所在的集合。
最后把两点之间最小割拿出来排个序,再二分查找即可。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define N 200
#define M 20000
using namespace std;
queue<int> q;
int n , head[N] , to[M] , val[M] , next[M] , cnt , s , t , dis[N] , ans[N][N] , a[N] , tmp[N] , v[M] , tot;
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = z , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
void solve(int l , int r)
{
if(l >= r) return;
int i , j , sum = 0 , p1 , p2;
for(i = 2 ; i <= cnt ; i += 2) val[i] = val[i ^ 1] = (val[i] + val[i ^ 1]) >> 1;
s = a[l] , t = a[r];
while(bfs()) sum += dinic(s , 1 << 30);
for(i = 1 ; i <= n ; i ++ )
if(dis[i])
for(j = 1 ; j <= n ; j ++ )
if(!dis[j])
ans[i][j] = ans[j][i] = min(ans[i][j] , sum);
for(p1 = i = l , p2 = r ; i <= r ; i ++ )
{
if(dis[a[i]]) tmp[p1 ++ ] = a[i];
else tmp[p2 -- ] = a[i];
}
for(i = l ; i <= r ; i ++ ) a[i] = tmp[i];
solve(l , p2) , solve(p1 , r);
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(head , 0 , sizeof(head)) , cnt = 1 , memset(ans , 0x7f , sizeof(ans)) , tot = 0;
int m , i , j , x , y , z , k;
scanf("%d%d" , &n , &m);
while(m -- ) scanf("%d%d%d" , &x , &y , &z) , add(x , y , z);
for(i = 1 ; i <= n ; i ++ ) a[i] = i;
solve(1 , n);
for(i = 1 ; i <= n ; i ++ )
for(j = i + 1 ; j <= n ; j ++ )
v[++tot] = ans[i][j];
sort(v + 1 , v + tot + 1);
scanf("%d" , &k);
while(k -- )
{
scanf("%d" , &x);
if(x >= v[tot]) printf("%d\n" , tot);
else printf("%d\n" , upper_bound(v + 1 , v + tot + 1 , x) - v - 1);
}
if(T) printf("\n");
}
return 0;
}
【bzoj2229】[Zjoi2011]最小割 分治+网络流最小割的更多相关文章
- [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割
题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...
- 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)
[BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...
- [bzoj2229][Zjoi2011]最小割_网络流_最小割树
最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...
- 最小割分治(最小割树):BZOJ2229 && BZOJ4519
定理:n个点的无向图的最小割最多n-1个. 可能从某种形式上形成了一棵树,不是很清楚. 最小割分治:先任选两个点求一边最小割,然后将两边分别递归,就能找到所有的最小割. 这两个题是一样的,直接搬din ...
- BZOJ2229: [Zjoi2011]最小割
题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...
- bzoj千题计划139:bzoj2229: [Zjoi2011]最小割
http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...
- BZOJ2229[Zjoi2011]最小割——最小割树
题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...
- 【bzoj4519】[Cqoi2016]不同的最小割 分治+最小割
题目描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将所有顶点处在不同 ...
- ACM/ICPC 之 最小割转网络流(POJ3469)
重点:构图 //最小割转网络流 //邻接表+Dinic //Time:5797Ms Memory:6192K #include<iostream> #include<cstring& ...
随机推荐
- substring()和substr()的使用以及区别
在JavaScript中,通常会用到截取,那所谓截取呢,其实就是要获得被截取元素的某个位置到某个位置的内容,那么JS给我提供了substring和substr这两种方法: 这两种截取的方式有什么区别呢 ...
- Actionbar Demo
源码下载:http://download.csdn.net/detail/bx276626237/8874119
- 学习用5W1H来管理自己的项目/工作
学习用5W1H来管理自己的项目/工作 最近开始需要系统化的思维模型,这只是一个开始,一下用脑图的形式来简介5W1H的具体内容: 先写xmind思维树的文本导出,后面附上图片.^ _ ^ 5W1H ...
- 深度技术GHOST WIN7系统32,64位旗舰稳定版
系统来自系统妈:http://www.xitongma.com 系统概述 深度技术ghost win8 X86(32位)旗舰稳定版系统集成了SATA/RAID/SCSI驱动,支持P45. MCP78. ...
- 洛谷 P1438 无聊的数列
题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]},支持两种操作: 1.1 ...
- WPF中做出一个QQ登陆界面
Xaml: <Window x:Class="ChatSoftware.MainWindow" xmlns="http://schemas.microsoft.co ...
- 用vscode开发vue应用[转]
https://segmentfault.com/a/1190000019055976 现在用VSCode开发Vue.js应用几乎已经是前端的标配了,但很多时候我们看到的代码混乱不堪,作为一个前端工程 ...
- AC自动机讲解+[HDU2222]:Keywords Search(AC自动机)
首先,有这样一道题: 给你一个单词W和一个文章T,问W在T中出现了几次(原题见POJ3461). OK,so easy~ HASH or KMP 轻松解决. 那么还有一道例题: 给定n个长度不超过50 ...
- 浏览器window产生的缓存九种解决办法
浏览器缓存(Browser Caching)是浏览器端保存数据用于快速读取或避免重复资源请求的优化机制,有效的缓存使用可以避免重复的网络请求和浏览器快速地读取本地数据,整体上加速网页展示给用户.浏览器 ...
- 标准C中字符串分割方法
◆ 使用strtok函数分割. 原型:char *strtok(char *s, char *delim); strtok在s中查找包含在delim中的字符并用NULL('\0')来替换,直到找遍整个 ...