【Luogu】P1231教辅的组成(拆点+Dinic+当前弧优化)
妈耶
我的图建反了两次 准确的说是有两个地方建反了,然后反上加反改了一个小时……
知道为什么要拆点吗?

假设这是你的图 左边到右边依次是超级源点 练习册 书 答案 超级汇点
请问这张图的最大流是多少?
如果把中间拆成这样:

Book-in是跟练习册匹配的书的入端,Book-out是跟答案匹配的书的出端。相当于每本书都是一条隧道,有入口有出口,每本书的入口和对应的出口连边。
请问现在这张图的最大流是多少?
所以你看。
代码放上:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype> inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} struct Edge{
int next,to,val;
}edge[];
int head[],num=-;
inline void add(int from,int to,int val){
edge[++num]=(Edge){ head[from],to,val};
head[from]=num;
} bool vis[];
int dfn[];
int list[];
int f[],h,t=;
int n,m,Start,End; bool bfs(){
memset(vis,,sizeof(vis));
f[]=Start;vis[Start]=;dfn[Start]=;h=;t=;
while(h++<t){
int from=f[h];
for(int i=head[from];i!=-;i=edge[i].next){
int to=edge[i].to;
if(vis[to]||(!edge[i].val)) continue;
dfn[to]=dfn[from]+;
vis[to]=;
f[++t]=to;
}
}
return vis[End];
} int dfs(int x,int val){
if(x==End||val==) return val;
int flow=;
vis[x]=;
for(int &i=list[x];i!=-;i=edge[i].next){
int to=edge[i].to;
if(dfn[to]==dfn[x]+&&!vis[to]&&edge[i].val>){
int now=dfs(to,std::min(edge[i].val,val));
if(now>){
edge[i].val-=now;
edge[i^].val+=now;
flow+=now;val-=now;
if(val<=) break;
}
}
}
if(flow!=val) dfn[x]=-;
return flow;
} int ans; int main(){
memset(head,-,sizeof(head));
int n1=read(),n2=read(),n3=read();
int n=n1*+n2;int N=n+n3;End=N+;
int m1=read();
for(int i=;i<=m1;++i){
int book=read(),note=read();
add(note+n1*,book,);
add(book,note+n1*,);
}
int m2=read();
for(int i=;i<=m2;++i){
int book=read(),ansnote=read();
add(book+n1,ansnote+n,);
add(ansnote+n,book+n1,);
}
for(int i=;i<=n1;++i){
add(i,i+n1,);
add(i+n1,i,);
}
for(int i=;i<=n2;++i){
add(Start,i+n1*,);
add(i+n1*,Start,);
}
for(int i=;i<=n3;++i){
add(i+n,End,);
add(End,i+n,);
}
while(bfs()){
memset(vis,,sizeof(vis));
for(int i=;i<=End;++i) list[i]=head[i];
int now=dfs(Start,0x7fffffff);
if(!now) break;
ans+=now;
}
printf("%d",ans);
return ;
}
话说当前弧优化真好用
【Luogu】P1231教辅的组成(拆点+Dinic+当前弧优化)的更多相关文章
- Luogu P1231 教辅的组成
Luogu P1231 教辅的组成 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还 ...
- ARC085E(最小割规划【最大流】,Dinic当前弧优化)
#include<bits/stdc++.h>using namespace std;typedef long long ll;const ll inf=0x3f3f3f3f;int cn ...
- Dinic当前弧优化 模板及教程
在阅读本文前,建议先自学最大流的Ek算法. 引入 Ek的核心是执行bfs,一旦找到增广路就停下来进行增广.换言之,执行一遍BFS执行一遍DFS,这使得效率大大降低.于是我们可以考虑优化. 核心思路 在 ...
- [Poj2112][USACO2003 US OPEN] Optimal Milking [网络流,最大流][Dinic+当前弧优化]
题意:有K个挤奶机编号1~K,有C只奶牛编号(K+1)~(C+K),每个挤奶机之多能挤M头牛,现在让奶牛走到挤奶机处,求奶牛所走的最长的一条边至少是多少. 题解:从起点向挤奶机连边,容量为M,从挤奶机 ...
- P3376 网络流-最大流模板题(Dinic+当前弧优化)
(点击此处查看原题) Dinic算法 Dinic算法相对于EK算法,主要区别在于Dinic算法对图实现了分层,使得我们可以用一次bfs,一次dfs使得多条增广路得到增广 普通的Dinic算法已经可以处 ...
- HDU 4280 Island Transport(dinic+当前弧优化)
Island Transport Description In the vast waters far far away, there are many islands. People are liv ...
- 【luogu P1231 教辅的组成】 题解
题目链接:https://www.luogu.org/problemnew/show/P1231 对于每本书只能用一次,所以拆点再建边 #include <queue> #include ...
- P1231 教辅的组成 拆点限流
如果只有两个物品的话 是一个裸的二分图匹配问题 现在变成了三个物品之间的匹配 则只要在中间加一层节点表示书 再把这层的每个点拆成两个点中间连一条边限制流量 使其只能用一次 #include<io ...
- 网络流小记(EK&dinic&当前弧优化&费用流)
欢 迎 来 到 网 络 瘤 的 世 界 什么是网络流? 现在我们有一座水库,周围有n个村庄,每个村庄都需要水,所以会修水管(每个水管都有一定的容量,流过的水量不能超过容量).最终水一定会流向唯一一个废 ...
随机推荐
- IE下的圆角
元素{ position: relative;/*必须*/ z-index: 10;/*必须*/ border-radius: 8px; -moz-border-radius: 8px; -webki ...
- Objective-C Loops
There may be a situation, when you need to execute a block of code several number of times. In gener ...
- java代码(处理json串)
package test; import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONObject; public class ...
- 后台安装 SQL Server 无人值守 安装
(开头闲淡)项目需要必须安装SQL的,查了很久,断断续续用了各种方法,今天终于用了正确的姿(xia)势(mo)弄成了. 最开始用的方法是调用Win的API模拟鼠标操作安装的,嗯,虽然勉强可以,就是有些 ...
- UVA 1151 Buy or Build (最小生成树)
先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...
- solr scheme配置简介
solr 字段配置,和数据库数据索引配置 配置solr字段. schema.xml 文件里配置 先讲解一下,里面的一些字段 1. <types> ... </types> 表示 ...
- sql视图和表的区别
整理一下视图和表的区别 区别: 1.视图是已经编译好了的sql,表不是 2.视图没有实际的物理存储记录,表有 3.视图是逻辑概念,表可以进行修改 5.表是内模式,视图是外模式 6.视图是我们查看表的方 ...
- 通过例子理解 k8s 架构【转】
为了帮助大家更好地理解 Kubernetes 架构,我们部署一个应用来演示各个组件之间是如何协作的. 执行命令 kubectl run httpd-app --image=httpd --replic ...
- Mac app 破解之路
6年之前一直做过一些内存挂,脚本挂.都是比较低级的技术. 这几年期间,断断续续利用业余时间学了一些汇编的知识,当时只是想着破解游戏. 所有的黑技术都是业余自学的,没有老师可以问,只能百度和自己领悟,比 ...
- jQuery中Ajax事件beforesend及各参数含义
Ajax会触发很多事件. 有两种事件,一种是局部事件,一种是全局事件: 局部事件:通过$.ajax来调用并且分配. $.ajax({ beforeSend: function(){ // Handle ...