【bzoj1004】[HNOI2008]Cards

2014年5月26日5,3502

Description

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述
一种洗牌法,每行有 n 个用空格隔开的整数 X1X2…Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,
第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Output

不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。

题解

  置换的循环在不变元素中一定是一个颜色,所以只需要dp一下这个是属于那种颜色的

  就是换了一种求不动点的方式

  然后可以求一个三维的01背包的方案数。而最后的

  除法需要利用扩展欧几里得求乘法的逆元。

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
inline int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x;
}
int s1,s2,s3,n,m,mod,ans;
int a[][],f[][][],d[];
bool b[];
int dp(int x)
{
for(int i=;i<=n;i++)b[i]=;
int sum=,p;
for(int i=;i<=n;i++)
if(!b[i])
{
d[++sum]=;p=i;
b[p]=;
while(!b[a[x][p]])
{
d[sum]++;
b[a[x][p]]=;
p=a[x][p];
}
}
for(int i=s1;i>=;i--)
for(int j=s2;j>=;j--)
for(int k=s3;k>=;k--)
f[i][j][k]=;
f[][][]=;
for(int h=;h<=sum;h++)
for(int i=s1;i>=;i--)
for(int j=s2;j>=;j--)
for(int k=s3;k>=;k--)
{
if(i>=d[h])f[i][j][k]=(f[i][j][k]+f[i-d[h]][j][k])%mod;
if(j>=d[h])f[i][j][k]=(f[i][j][k]+f[i][j-d[h]][k])%mod;
if(k>=d[h])f[i][j][k]=(f[i][j][k]+f[i][j][k-d[h]])%mod;
}
return f[s1][s2][s3];
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==){x=;y=;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*y;
}
int main()
{
s1=read(),s2=read(),s3=read(),m=read(),mod=read();
n=s1+s2+s3;
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
a[i][j]=read();
m++;
for(int i=;i<=n;i++)a[m][i]=i;
for(int i=;i<=m;i++)
ans=(ans+dp(i))%mod;
int x,y;
exgcd(m,mod,x,y);
while(x<=)x+=mod,y-=m;
printf("%d",ans*x%mod);
return ;
}

bzoj1004 [HNOI2008]Cards 置换群+背包的更多相关文章

  1. [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  2. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  3. BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】

    题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...

  4. BZOJ1004 HNOI2008 Cards Burnside、背包

    传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...

  5. [BZOJ1004][HNOI2008]Cards 群论+置换群+DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 首先贴几个群论相关定义和引理. 群:G是一个集合,*是定义在这个集合上的一个运算. ...

  6. BZOJ1004[HNOI2008]Cards——polya定理+背包

    题目描述 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色 ...

  7. bzoj1004 [HNOI2008]Cards Burnside定理+背包

    题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量.        这道题,显然每种 ...

  8. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  9. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

随机推荐

  1. Dapper系列之一:Dapper的入门(多表批量插入)

    Dapper介绍  简介:      不知道博客怎么去写去排版,查了好多相关博客,也根据自己做过项目总结,正好最近搭个微服务框架,顺便把搭建微服务框架所运用的知识都进行博客梳理,为了以后复习,就仔细琢 ...

  2. AJPFX浅谈Java 性能优化之垃圾回收(GC)

    ★JVM 的内存空间 在 Java 虚拟机规范中,提及了如下几种类型的内存空间: ◇栈内存(Stack):每个线程私有的.◇堆内存(Heap):所有线程公用的.◇方法区(Method Area):有点 ...

  3. LN : leetcode 215 Kth Largest Element in an Array

    lc 215 Kth Largest Element in an Array 215 Kth Largest Element in an Array Find the kth largest elem ...

  4. jQuery选择器之属性筛选选择器

    在这么多属性选择器中[attr="value"]和[attr*="value"]是最实用的 [attr="value"]能帮我们定位不同类型 ...

  5. VC++编译出错:LNK1123: 转换到 COFF 期间失败: 文件无效或损坏

    解决方法: 1.搜索C盘下的cvtres.exe,结果得到类似这样的列表: C:\Program Files\Microsoft Visual Studio 10.0\VC\bin C:\Window ...

  6. LNMP笔记:解决mail函数不能发送邮件

    用LNMP环境,在探针里测试发送邮件,失败了.已经确定mail()函数是开启的. 问题根源 没有安装或启动 sendmail 组件 解决办法 我是新手,命令不熟,所以写的很详细,老鸟勿喷哦 1.重新安 ...

  7. 分布式技术EJB3_分库架构 - 【动力节点官网】北京Java …

    分布式技术EJB3_分库架构 - [动力节点官网]北京Java … http://www.bjpowernode.com/xiazai/2220.html <程序天下--EJB JPA数据库持久 ...

  8. toplink

    TopLink,是位居第一的Java对象关系可持续性体系结构,原署WebGain公司的产品,后被Oracle收购,并重新包装为Oracle AS TopLink.TOPLink为在关系数据库表中存储 ...

  9. sqlite3:深入理解sqlite3_stmt 机制

    我们在使用sqlite3的过程中,涉及到批量操作时(批量插入.批量读...),总会遇到 sqlite3_stmt这个数据类型,按照官方解释说法是这样的:sqlite3_stmt是C接口中“准备语句对象 ...

  10. vue的使用配置

    我的编辑器是webstorm,虽然占内容占资源, 但是用起来很方便, 刚开始接触的时候就是用这个软件,很喜欢. vue的教程 1.http://www.jianshu.com/p/5ba253651c ...