不多说,直接上干货!

Object Detection发展介绍

  Faster rcnn是用来解决计算机视觉(CV)领域中Object Detection的问题的。经典的解决方案是使用: SS(selective search)产生proposal,之后使用像SVM之类的classifier进行分类,得到所有可能的目标.
  使用SS的一个重要的弊端就是:特别耗时,而且使用像传统的SVM之类的浅层分类器,效果不佳。
  鉴于神经网络(NN)的强大的feature extraction特征,可以将目标检测的任务放到NN上面来做,使用这一思想的目标检测的代表是:
RCNN Fast-RCNNFaster-RCNN YOLO

  

  简单点说就是:

  • RCNN 解决的是,“为什么不用CNN做detection呢?”
  • Fast-RCNN 解决的是,“为什么不一起输出bounding box和label呢?”
  • Faster-RCNN 解决的是,“为什么还要用selective search呢?”

Faster-Rcnn原理简介

  鉴于之上的分析,想要在时间上有所突破就要在如何更快的产生proposal上做工夫。
Faster使用NN来做region proposal,在Fast-rcnn的基础上使用共享卷积层的方式。作者提出,卷积后的特征图同样也是可以用来生成 region proposals 的。通过增加两个卷积层来实现Region Proposal Networks (RPNs) , 一个用来将每个特征图 的位置编码成一个向量,另一个则是对每一个位置输出一个 objectness score 和 regressed bounds for k region proposals.

            

RPN

  RPN的作用有以下几个:

(1) 输出proposal的位置(坐标)和score
(2) 将不同scale和ratio的proposal映射为低维的feature vector
(3) 输出是否是前景的classification和进行位置的regression

  这里论文提到了一个叫做Anchor的概念,作者给出的定义是:

The k proposals are parameterized relative to k reference boxes, which we call anchors

  

  我的理解是:不同ratio和scale的box集合就是anchor, 对最后一层卷积生成的feature map将其分为n*n的区域,进行不同ratio和scale的采样.

                

RPN的cls和reg

  RPN输出对于某个proposal,其是属于前景或者背景的概率(0 or 1),具体的标准论文里给出的是:

  • 和所有的ground-truth的IoU(Intersection-over-union)小于0.3视为negative(背景)
  • 和任意的ground-truth的IoU大于0.7视为positive(前景)
  • 不属于以上两种情况的proposal直接丢掉,不进行训练使用

  对于regression,作用是进行proposal位置的修正:

  • 学习k个bounding-box-regressors
  • 每个regresso负责一个scale和ratio的proposal,k个regressor之间不共享权值

RPN Training

  两种训练方式: joint trainingalternating training
两种训练的方式都是在预先训练好的model上进行fine-tunning,比如使用VGG16、ZF等,对于新加的layer初始化使用random initiation,使用SGD和BP在caffe上进行训练

alternating training

  首先训练RPN, 之后使用RPN产生的proposal来训练Fast-RCNN, 使用被Fast-RCNN tuned的网络初始化RPN,如此交替进行

joint training

  首先产生region proposal,之后直接使用产生的proposal训练Faster-RCNN,对于BP过程,共享的层需要combine RPN loss和Faster-RCNN los

Result

  结果自然不用说,肯定是state-of-art,大家自己感受下吧

参考博客

深度学习笔记之使用Faster-Rcnn进行目标检测 (原理篇)的更多相关文章

  1. 使用Faster R-CNN做目标检测 - 学习luminoth代码

    像玩乐高一样拆解Faster R-CNN:详解目标检测的实现过程 https://mp.weixin.qq.com/s/M_i38L2brq69BYzmaPeJ9w 直接参考开源目标检测代码lumin ...

  2. 深度学习笔记(十四)车道线检测 SCNN

    论文:Spatial As Deep: Spatial CNN for Traffic Scene Understanding 代码:https://github.com/XingangPan/SCN ...

  3. 深度学习笔记(十二)车道线检测 LaneNet

    论文:Towards End-to-End Lane Detection: an Instance Segmentation Approach 代码:https://github.com/MaybeS ...

  4. Google TensorFlow深度学习笔记

    Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...

  5. 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

    深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...

  6. UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)

    UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...

  7. UFLDL深度学习笔记 (一)反向传播与稀疏自编码

    UFLDL深度学习笔记 (一)基本知识与稀疏自编码 前言 近来正在系统研究一下深度学习,作为新入门者,为了更好地理解.交流,准备把学习过程总结记录下来.最开始的规划是先学习理论推导:然后学习一两种开源 ...

  8. UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化

    UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化 主要思路 前面几篇所讲的都是围绕神经网络展开的,一个标志就是激活函数非线性:在前人的研究中,也存在线性激活函数的稀疏编码,该方法试图直接学习数据的特 ...

  9. UFLDL深度学习笔记 (六)卷积神经网络

    UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像 ...

  10. UFLDL深度学习笔记 (五)自编码线性解码器

    UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论&q ...

随机推荐

  1. 解决浏览器自动填充input

    浏览器输入框自动填充解决办法 emmmmm:今天处理公司后台系统遇到的:登录页面浏览器保存账号密码后:浏览器会自动在其他页面进行填充:解决如下图: 浏览器会默认填充input type值为passwo ...

  2. 关于inet_ntop、inet_pton中的n和p分别代表的意义

    函数名中的p和n非别代表表达(presentation)和数值(numeric).地址的表达格式通常是ASCII字符串,数值格式则是存放到套接字地址结构中的二进制值. 参考自:https://blog ...

  3. Mybatis判断int类型是否为空

     Mybatis判断int是否为空只要!=null就行了  

  4. javax.servlet.jsp.JspTagException: Neither BindingResult nor plain target object for bean (蛋疼死我了)

    1为抛出异常原因,2为异常解决方法. 原因:   进入spring:bind标签源码你可以看到 Object target = requestContext.getModelObject(beanNa ...

  5. iframe in ipad safari

    http://developer.apple.com/library/safari/#documentation/appleapplications/reference/safariwebconten ...

  6. BeautifulSoup实例

    Beautiful Soup 4.4.0 中文文档:http://beautifulsoup.readthedocs.io/zh_CN/latest/ #coding:utf-8from bs4 im ...

  7. Python模块学习 - openpyxl读写excel

    openpyxl模块介绍 openpyxl模块是一个读写Excel 2010文档的Python库,如果要处理更早格式的Excel文档,需要用到额外的库,openpyxl是一个比较综合的工具,能够同时读 ...

  8. BZOJ 3926: [Zjoi20150]诸神眷顾的幻想乡

    3926: [Zjoi20150]诸神眷顾的幻想乡 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 438  Solved: 273 Descripti ...

  9. Python的3种格式化字符串方法

    Python中有3种format字符串的方式: 传统C语言式 命名参数 位置参数 1. 传统C语言式 和c语言里面的 sprintf 类似,参数格式也一样 title = "world&qu ...

  10. 【BZOJ1211】树的计数(Prufer编码)

    题意:一个有n个结点的树,设它的结点分别为v1, v2, …, vn, 已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵. 其中1<=n<=150,输入数据保证满足条件的 ...