lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元
题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013
1013: [JSOI2008]球形空间产生器sphere
时间限制: 1 Sec 内存限制: 162 MB
提交: 3063 解决: 1607
[提交][][]
题目描写叙述
有一个球形空间产生器可以在n维空间中产生一个坚硬的球体。如今,你被困在了这个n维球体中。你仅仅知道球面上n+1个点的坐标。你须要以最快的速度确定这个n维球体的球心坐标。以便于摧毁这个球形空间产生器。
输入
第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每个实数精确到小数点后6位,且其绝对值都不超过20000。
输出
有且仅仅有一行。依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每一个实数精确到小数点后3位。数据保证有解。
你的答案必须和标准输出一模一样才可以得分。
例子输入
0.0 0.0
-1.0 1.0
1.0 0.0
例子输出
提示
数据规模:
对于40%的数据,1<=n<=3
对于100%的数据,1<=n<=10
提示:给出两个定义:
1、 球心:到球面上随意一点距离都相等的点。
2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )
做法:把圆心坐标设成 x1,x2,x3.... ,有若干个点 当中两个点坐标为a1,a2, a3.... 和b1,b2,b3.
能够写出方程
sqrt((a1-x1)^2+(a2-x2)^2+(a3-x3)^2)=sqrt((b1-x1)^2+(b2-x2)^2+(b3-x3)^2)
两边去根号。
(a1-x1)^2+(a2-x2)^2+(a3-x3)^2=(b1-x1)^2+(b2-x2)^2+(b3-x3)^2
把平分打开
a1^2+x1^2+a2^2+x2^2+a3^2+x3^2-2*a1*x1-2*a2*x2-2*a3*x3=b1^2+x1^2+b2^2+x2^2+b3^2+x3^2-2*b1*x1-2*b2*x2-2*b3*x3
整理下 把x的二次方 两边都减去。把x的一次放左边 0次项放右边。
-2*a1*x1-2*a2*x2-2*a3*x3+2*b1*x1+2*b2*x2+2*b3*x3=b1^2+b2^2+b3^2-a1^2-a2^2-a3^2
整理下
(-2*a1+2*b1)*x1+(-2*a2+2*b2)*x2+(-2*a3+2*b3)*x3=b1^2+b2^2+b3^2-a1^2-a2^2-a3^2
一共同拥有n+1个点,所以能够写出n条这种等式。
最后的形式就是AX=b了, 然后就能够高斯消元了。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <malloc.h>
#include <ctype.h>
#include <math.h>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#include <stack>
#include <queue>
#include <vector>
#include <deque>
#include <set>
#include <map> #define eps 1e-9
const int MAXN=220;
double a[MAXN][MAXN],x[MAXN];//方程的左边的矩阵和等式右边的值,求解之后x存的就是结果
int equ,var;//方程数和未知数个数
/*
*返回0表示无解。1表示有解
*/
int Gauss()
{
int i,j,k,col,max_r;
for(k=0,col=0;k<equ&&col<var;k++,col++)
{
max_r=k;
for(i=k+1;i<equ;i++)
if(fabs(a[i][col])>fabs(a[max_r][col]))
max_r=i;
if(fabs(a[max_r][col])<eps)return 0;
if(k!=max_r)
{
for(j=col;j<var;j++)
swap(a[k][j],a[max_r][j]);
swap(x[k],x[max_r]);
}
x[k]/=a[k][col];
for(j=col+1;j<var;j++)a[k][j]/=a[k][col];
a[k][col]=1;
for(i=0;i<equ;i++)
if(i!=k)
{
x[i]-=x[k]*a[i][k];
for(j=col+1;j<var;j++)a[i][j]-=a[k][j]*a[i][col];
a[i][col]=0;
}
}
return 1;
} double dian[13][13];
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n+1;i++)
for(int j=0;j<n;j++)
scanf("%lf",&dian[i][j]);
equ=n;
var=n;
memset(x,0,sizeof x);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
a[i][j]=-2.0*dian[i][j]+2*dian[i+1][j];
for(int j=0;j<n;j++)
x[i]+=dian[i+1][j]*dian[i+1][j]-dian[i][j]*dian[i][j];
}
Gauss();
for(int i=0;i<n;i++)
{
if(i!=0)
printf(" ");
printf("%.3lf",x[i]);
}
}
return 0;
}
lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元的更多相关文章
- BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...
- 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题
最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...
- [JSOI2008]球形空间产生器 (高斯消元)
[JSOI2008]球形空间产生器 \(solution:\) 非常明显的一道高斯消元.给了你n+1个球上的位置,我们知道球上任何一点到球心的距离是相等,所以我们 可以利用这一个性质.我们用n+1个球 ...
- BZOJ 1013 球形空间产生器sphere 高斯消元
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...
- BZOJ1013球形空间产生器sphere 高斯消元
@[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...
- bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...
- 洛谷P4035 [JSOI2008]球形空间产生器(高斯消元)
洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由 ...
随机推荐
- idea关闭,tomcat却没关闭的设置方法
最近,遇到个事,我在打开tomcat时,关闭了idea,再次打开时,运行tomcat时,发现端口占用,查看任务管理器,发现,tomcat没有随idea的关闭而关闭. 后来,想想,可能是,在关闭时,点了 ...
- 第4节 hive调优:1、2、fetch抓取和表的优化
hive的调优:第一个调优:fetch抓取,能够避免使用mr的,就尽量不要用mr,因为mr太慢了 set hive.fetch.task.conversion=more 表示我们的全局查找,字段查找, ...
- Java 调用存储过程 返回结果集
这里使用Oracle数据库的thin连接. 下面是存储过程SQL 1 createorreplaceprocedure proc3(stid in student.stuid%type, stname ...
- 简述站点访问控制、基于用户的访问控制、httpd虚拟主机、持久链接等应用配置实例
1 站点访问控制 可基于两种机制指明对哪些资源进行何种访问控制: 文件系统路径 URL路径 注意: 从上到下匹配,匹配到一个就立即执行 如果没有子目录的访问控制,但是有父目录的访问控制,则子目录继承父 ...
- loadrunner 添加负载机
1.打开Controller 2. 添加负载 3. 配置参数 4.完成
- 细说php第八章笔记(初稿)
8.1 函数的定义 函数是被命名的: 函数是独立的: 函数执行特定的任务: 函数可以用将一个返回值返回给调用他的程序 函数的优越性 提高程序的重用性 ...
- 6.0以上,SYSTEM_ALERT_WINDOW 权限的问题
6.0以上会因为SYSTEM_ALERT_WINDOW权限的问题,无法在最上层显示. 用户打开软件设置页手动打开,才能授权.路径是:Settings->Apps->App Setting- ...
- 如何使用JDK1.6 API
如何使用JDK1.6 API-------https://jingyan.baidu.com/article/54b6b9c0e39a102d583b47d5.html
- jQuery_DOM学习之------包裹元素的方法
1..wrap( ):在集合中匹配的每个元素周围包裹一个HTML结构 简单的看一段代码: <span>连接文字</span> 给span元素增加一个a包裹 $('span'). ...
- [BZOJ2667][cqoi2012]模拟工厂
[BZOJ2667][cqoi2012]模拟工厂 试题描述 有一个称为“模拟工厂”的游戏是这样的:在时刻0,工厂的生产力等于1.在每个时刻,你可以提高生产力或者生产商品.如果选择提高生产力,在下一个时 ...