Luogu P1257 平面上的最接近点对 暴力
这道题数据不大
两点距离用勾股定理求
#include<iostream>
#include<cmath>
using namespace std;
struct node{
int x,y;
}p[100001];
int n;
double dis(node a,node b){//勾股定理函数
double x=abs(a.x-b.x),y=abs(a.y-b.y);
return sqrt(x*x+y*y);
}
double mini=0x7fffffff;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&p[i].x,&p[i].y);
for(int j=i-1;j>=1;j--){
mini=min(mini,dis(p[i],p[j]));//一边输入一边搜
}
}
printf("%.4f\n",mini);
}
Luogu P1257 平面上的最接近点对 暴力的更多相关文章
- Luogu P1257 平面上的最接近点对_暴力
这道题数据不大 两点距离用勾股定理求 #include<iostream> #include<cmath> using namespace std; struct node{ ...
- 洛谷 P1257 平面上的最接近点对 题解
P1257 平面上的最接近点对 题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的. 输入格式 第一行:n:2≤n≤10000 接下来n行:每行两 ...
- p1257 平面上最接近点对---(分治法)
首先就是一维最接近点的情况... #include<iostream> #include<cstdio> #include<cstring> #include< ...
- 洛谷P1257 平面上的最接近点对
n<=10000个点,求欧几里德距离最小的一对点. 经典分治,把这些点按x排序,分成两半,每边分别算答案,答案是左边的最小,右边的最小,左右组起来的最小三者的最小.发现只有左右组的有点难写. 假 ...
- P1257 平面上的最接近点对
题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的 输入输出格式 输入格式: 第一行:n:2≤n≤200000 接下来n行:每行两个实数:x y, ...
- Luogu 1429 平面最近点对 | 平面分治
Luogu 1429 平面最近点对 题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的 输入输出格式 输入格式: 第一行:n:2≤n≤200000 ...
- POJ C程序设计进阶 编程题#4:寻找平面上的极大点
编程题#4:寻找平面上的极大点 来源: POJ (Coursera声明:在POJ上完成的习题将不会计入Coursera的最后成绩.) 注意: 总时间限制: 1000ms 内存限制: 65536kB 描 ...
- COJN 0485 800503寻找平面上的极大点
800503寻找平面上的极大点 难度级别:C: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 在一个平面上,如果有两个点(x,y),(a,b) ...
- uva10245-The Closest Pair Problem(平面上的点分治)
解析:平面上的点分治,先递归得到左右子区间的最小值d,再处理改区间,肯定不会考虑哪些距离已经大于d的点对,对y坐标归并排序,然后从小到大开始枚举更新d,对于某个点,x轴方向只用考虑[x-d,x+d]( ...
随机推荐
- 配置JDK、tomcat及Java Web项目部署
一.JDK的安装 (1)下载安装JDK: 这个就不用说了,直接官网下载jdk安装即可.http://www.oracle.com/technetwork/java/javaee/downloads/i ...
- 专题三:自定义Web服务器
前言: 经过前面的专题中对网络层协议和HTTP协议的简单介绍相信大家对网络中的协议有了大致的了解的, 本专题将针对HTTP协议定义一个Web服务器,我们平常浏览网页通过在浏览器中输入一个网址就可以看到 ...
- 02使用常规步骤编译NanoPiM1Plus的Android4.4.2
02使用常规步骤编译NanoPiM1Plus的Android4.4.2 大文实验室/大文哥 壹捌陆捌零陆捌捌陆捌贰 21504965 AT qq.com 完成时间:2017/12/5 17:51 版本 ...
- NoSQL与关系数据库
关系型数据库:完全支持关系代数理论作为基础:有较大的数据规模:固定的数据库模式:查询效率快:强一致性:数据完整性较易实现:扩展性一般:可用性好. NoSQL:部分支持关系代数理论作为基础:有超大数据规 ...
- [转]MapReduce浅析
本文转自http://edisonchou.cnblogs.com/ 一.什么是MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大 ...
- clipboard.min.js 复制表格内容
<script type="text/javascript" src="js/clipboard.min.js"></script> & ...
- POJ_1847_Tram
Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 11159 Accepted: 4089 Description ...
- Java线程的sleep方法
sleep方法的签名: public static void sleep (long millis) sleep方法是Thread类的一个方法,作用是:在指定的毫秒内让正在执行的线程休眠(暂停执行) ...
- 【LeetCode】9、Palindrome Number(回文数)
题目等级:Easy 题目描述: Determine whether an integer is a palindrome. An integer is a palindrome when it rea ...
- 王垠:写给支持和反对《完全用Linux工作》的人们
王垠:写给支持和反对<完全用Linux工作>的人们 在一阵阵唾骂和欢呼声中,<完全用linux工作>被转载到了天涯海角.很多人支持我,也有很多人唾骂我.我不知道它是怎样流传到那 ...