HDU - 5973 Game of Taking Stones (威佐夫博弈 高精度)
题目描述:
Two people face two piles of stones and make a game. They take turns to take stones. As game rules, there are two different methods of taking stones: One scheme is that you can take any number of stones in any one pile while the alternative is to take the same amount of stones at the same time in two piles. In the end, the first person taking all the stones is winner.Now,giving the initial number of two stones, can you win this game if you are the first to take stones and both sides have taken the best strategy?
InputInput contains multiple sets of test data.Each test data occupies one line,containing two non-negative integers a andb,representing the number of two stones.a and b are not more than 10^100.OutputFor each test data,output answer on one line.1 means you are the winner,otherwise output 0.Sample Input
2 1
8 4
4 7
Sample Output
0
1
0
题目大意:两个人抓石子,有两堆石子,石子数量分别是a,b,每次可以从一堆中抓若干石子,也可以从两堆同时抓取相同数量的石子,谁先抓完谁获胜,现在你先手,问是否必胜,必胜输出1否则输出0. 题解:裸的威佐夫博弈和队友谈论了半天没看出来,神奇的是队友竟然推出了威佐夫博弈奇异局势的数列(0,0) (1,2) (3,5) (4,7) (6,10) (8,13) (9,15) (11,18)(12,20)……可以说她是一只可爱的小仙女了。
但算不出通项公式也算是没辙,话说威佐夫博弈中根号5怎么来的竟然和黄金分割数有关。 【威佐夫博弈】
威佐夫博弈:有两堆石子,每次一个人可以两堆同时取相同数量的石子,也可以只取其中一堆的石子,最后谁取完谁获胜,请问先手还是后手胜? 奇异局势:让先手必输的局势,那么由这些局势在规定范围内拓展的局势也是先手必输的局势(但在这里双方自由选取,不适用)。我们可以得出一些局势使A必输:(0,0) (1,2) (3,5) (4,7) (6,10) (8,13) (9,15) (11,18)(12,20)……我们称这些局势为奇异局势
对于奇异局势来说,有以下性质:
- 任何自然数都一定包含在一个奇异局势中。
- 任意操作都可以将奇异局势转变为非奇异局势。
- 可以将非奇异局势转变为奇异局势。
那么,当我们面对下列情况时,可以这样应对:
当a=b时,两堆同时取a
当a=ak,b>bk时,2堆取b-bk个
当a=ak,b<bk时,2堆取a-a(b-a)个
当a>ak,b=bk(ak+k)时,1堆取a-ak个
当a<ak,b=bk(ak+k)时,从2堆中拿走若干变成奇异局势
如何判断一个数对是不是奇异局势呢?
当ak=(下取整)k*(1+√5)/2,bk=ak+k时(k为任意非负整数)局势为奇异局势
对于初始给定状态a b, a <= b
先求出k = b - a;
再验证a == k * (1+√5)/2 (右边下取整)
【威佐夫博弈高精度模板】JAVA版本
import java.math.BigInteger;
import java.util.Scanner; import java.math.BigDecimal ;
public class Main { //对常数开方保留多位小数,返回高精度小数
private static BigDecimal sqrt(BigDecimal x, int n) {
BigDecimal ans = BigDecimal.ZERO;
BigDecimal eps = BigDecimal.ONE;
for (int i = 0; i < n; ++i) {
while (ans.pow(2).compareTo(x) < 0) {
ans = ans.add(eps);
}
ans = ans.subtract(eps);
eps = eps.divide(BigDecimal.TEN);
}
return ans;
} public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
while(cin.hasNext()) {
BigDecimal a = cin.nextBigDecimal();
BigDecimal b = cin.nextBigDecimal();
BigDecimal c = sqrt(new BigDecimal(5), 120);
c = c.add(BigDecimal.ONE).divide(new BigDecimal(2));
BigDecimal t = null; if(a.compareTo(b) == 1) {
t = a;
a = b;
b = t;
}
//计算(bk - ak ) * (1+sqrt(5))/2 == ak是否成立 左边向下取整
if( b.subtract(a).multiply(c).setScale(0, BigDecimal.ROUND_DOWN).equals(a)) {
System.out.println(0);
}
else
System.out.println(1);
} cin.close();
} }
HDU - 5973 Game of Taking Stones (威佐夫博弈 高精度)的更多相关文章
- HDU 5973 Game of Taking Stones (威佐夫博弈+高精度)
题意:给定两堆石子,每个人可以从任意一堆拿任意个,也可以从两堆中拿相同的数量,问谁赢. 析:直接运用威佐夫博弈,floor(abs(a, b) * (sqrt(5)+1)/2) == min(a, b ...
- HDU 5973 Game of Taking Stones 威佐夫博弈+大数
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5973 Game of Taking Stones Time Limit: 2000/1000 MS ...
- HDU 1527 取石子游戏 (威佐夫博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是 ...
- HDU 1527 取石子游戏(威佐夫博弈)
基础威佐夫博弈,判断奇异局势即可,判断方式为k为两数之差绝对值,(sqrt(5) + 1) / 2 * k若等于两数小者则为奇异局势,也就是必败态. #include<stdio.h> # ...
- 题解报告:hdu 1527 取石子游戏(威佐夫博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石 ...
- hdu 1527 (威佐夫博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石 ...
- 取石子游戏 HDU 1527 博弈论 威佐夫博弈
取石子游戏 HDU 1527 博弈论 威佐夫博弈 题意 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两 ...
- HDU 2177 取(2堆)石子游戏 (威佐夫博弈)
题目思路:威佐夫博弈: 当当前局面[a,b]为奇异局时直接输出0 否则: 1.若a==b,输出(0 0): 2.将a,b不停减一,看能否得到奇异局,若有则输出: 3.由于 ak=q*k(q为黄金分割数 ...
- HDU 1527 取石子游戏(威佐夫博弈)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
随机推荐
- idea Please specify commit message
在idea中使用github来进行版本控制的时候, 当点击提交的时候遇到了这个问题 错误: Please specify commit message 解决方法: 在commit message中填写 ...
- Java中的线程--线程范围内共享数据
接着学习Java中的线程,线程范围内的共享数据! 一.线程范围内的数据共享定义 对于相同的程序代码,多个模块在同一个线程中共享一份数据,而在另外线程中运行时又共享另外一份数据. 共享数据中存在的问题, ...
- CS193p Lecture 9 - Animation, Autolayout
Animation(动画) Demo Dropit续 Autolayout(自动布局) 三种添加自动布局的方法: 使用蓝色辅助虚线,右键选择建议约束(Reset to Suggested Constr ...
- 设置tableview的滚动范围--iOS开发系列---项目中成长的知识三
设置tableview的滚动范围 有时候tableview的footerview上的内容需要向上拖动界面一定距离才能够看见, 项目中因为我需要在footerviw上添加一个按钮,而这个按钮又因为这个原 ...
- hihoCoder-1098-kruskal
如果起始点和终止点的父节点相同,就说明它们就已经在同一个连通分量里面,说明,起始点和终止点在此之前就已经被连入同一个分量之中,如果此时还将起始点和终止点连入此分量,就会形成回路,想象一个三角形,你大概 ...
- linux各种终端类型的区别和概念
1 pty(虚拟终端或伪终端): 当我们远程telnet到主机或使用xterm时不也需要一个终端交互么?是的,这就是虚拟终端pty(pseudo-tty). 2 tty(终端设备的统称):tty一词源 ...
- 2018年,最经典的26个JavaScript面试题和答案!
根据 Stack Overflow 的 2018 年度调查,JavaScript 连续六年成为最常用的编程语言.所以我们必须面对这样的现实,JavaScript 已经成为全栈开发技能的基石,在全栈开发 ...
- 快速入门Pandas
教你十分钟学会使用pandas. pandas是python数据分析的一个最重要的工具. 基本使用 # 一般以pd作为pandas的缩写 import pandas as pd # 读取文件 df = ...
- 算法学习记录-图——最小生成树之Kruskal算法
之前的Prim算法是基于顶点查找的算法,而Kruskal则是从边入手. 通俗的讲:就是希望通过 边的权值大小 来寻找最小生成树.(所有的边称为边集合,最小生成树形成的过程中的顶点集合称为W) 选取边集 ...
- python基础学习笔记——包
包的简介 你们听到的包,可不是女同胞疯狂喜欢的那个包,我们来看看这个是啥包 官方解释: 1 2 3 4 5 6 7 8 9 Packages are a way of structuring Pyth ...