Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.

Formally the function should:

Return true if there exists i, j, k 
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.

Note: Your algorithm should run in O(n) time complexity and O(1) space complexity.

Example 1:

Input: [1,2,3,4,5]
Output: true

Example 2:

Input: [5,4,3,2,1]
Output: false

给一个非排序的数组,判断是否存在一个长度为3的递增子序列。 要求:T: O(n)  S: O(1)

解法:由于时间和空间复杂度的要求,不能用排序或者DP的方法。遍历数组,用两个变量分别记录当前的最小值和第二小的值,如果发现一个比这两个都大的数,则组成了一个长度为3的子序列,返回True。如果遍历结束,没找到返回False。

Java:

public boolean increasingTriplet(int[] nums) {
// start with two largest values, as soon as we find a number bigger than both, while both have been updated, return true.
int small = Integer.MAX_VALUE, big = Integer.MAX_VALUE;
for (int n : nums) {
if (n <= small) { small = n; } // update small if n is smaller than both
else if (n <= big) { big = n; } // update big only if greater than small but smaller than big
else return true; // return if you find a number bigger than both
}
return false;
}

Python:

def increasingTriplet(nums):
first = second = float('inf')
for n in nums:
if n <= first:
first = n
elif n <= second:
second = n
else:
return True
return False

C++:

bool increasingTriplet(vector<int>& nums) {
int c1 = INT_MAX, c2 = INT_MAX;
for (int x : nums) {
if (x <= c1) {
c1 = x; // c1 is min seen so far (it's a candidate for 1st element)
} else if (x <= c2) { // here when x > c1, i.e. x might be either c2 or c3
c2 = x; // x is better than the current c2, store it
} else { // here when we have/had c1 < c2 already and x > c2
return true; // the increasing subsequence of 3 elements exists
}
}
return false;
}

  

  

All LeetCode Questions List 题目汇总

[LeetCode] 334. Increasing Triplet Subsequence 递增三元子序列的更多相关文章

  1. 334 Increasing Triplet Subsequence 递增的三元子序列

    给定一个未排序的数组,请判断这个数组中是否存在长度为3的递增的子序列.正式的数学表达如下:    如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1,    ...

  2. 【LeetCode】334. Increasing Triplet Subsequence 解题报告(Python)

    [LeetCode]334. Increasing Triplet Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode. ...

  3. [LeetCode] Increasing Triplet Subsequence 递增的三元子序列

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  4. LeetCode 334 Increasing Triplet

    这个题是说看一个没有排序的数组里面有没有三个递增的子序列,也即: Return true if there exists i, j, k such that arr[i] < arr[j] &l ...

  5. 【LeetCode】Increasing Triplet Subsequence(334)

    1. Description Given an unsorted array return whether an increasing subsequence of length 3 exists o ...

  6. 334. Increasing Triplet Subsequence My Submissions Question--Avota

    问题描述: Given an unsorted array return whether an increasing subsequence of length 3 exists or not in ...

  7. 【leetcode】Increasing Triplet Subsequence

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  8. 334. Increasing Triplet Subsequence(也可以使用dp动态规划)

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  9. 334. Increasing Triplet Subsequence

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

随机推荐

  1. python应用-解决现实应用题

    公鸡5元1只,母鸡3元1只,小鸡一元3只,100元买100只鸡,三种鸡各多少只 x+y+z=100 5*x+3*y+z//3=100 z%3==0 穷举法-穷尽所有的可能性找到真正的答案 for x ...

  2. Content-Type与MIME

    http://www.cnblogs.com/jsean/articles/1610265.html 首先,我们要了解浏览器是如何处理内容的.在浏览器中显示的内容有 HTML.有 XML.有 GIF. ...

  3. 第6章 初识MyBatis

    6.1 什么是MyBatis Mybatis(前身是iBatis)是一个支持普通SQL查询.存储过程以及高级映射的持久层框架.MyBatis框架也被称为ORM(Object/Relational Ma ...

  4. html css div固定底部

    <div id="father"> <footer></footer> </div> #father{ position:relat ...

  5. 【转载】windbg 常用命令详解

    windbg 常用命令详解 https://blog.csdn.net/chenyujing1234/article/details/7743460 vertarget 显示当前进程的大致信息 lmv ...

  6. Java中lambda表达式学习

    一.Lambda表达式的基础语法: Java8中引入了一个新的操作符"->"该操作符称为箭头操作符或Lambda操作符,箭头操作符将Lambda表达式拆分为两部分: 左侧:L ...

  7. eclipse中的maven插件

    导入一个maven项目,一直报错:org.codehaus.plexus.archiver.jar.Manifest.write(java.io.PrintWriter)的错误 Description ...

  8. 08-图8 How Long Does It Take (25 分)

    Given the relations of all the activities of a project, you are supposed to find the earliest comple ...

  9. Fluent——UDF监测指定点的物理量

    Fluent版本:19.0 Fluent当中提供了监测某一点物理量随迭代次数或者随时间变化的功能,下面我们就介绍如何在UDF当中实现相同的功能,并且UDF更加灵活,通过UDF的方式我们在知道某点运动规 ...

  10. eclipse tomcat 热加载 免除重启

       Tomcat的热部署(以后就不用重起了)   1. tomcat上的部署问题,有时候也是个麻烦的问题,要是不采用热部署,我们就只能每次对原来的文件做一次改动的时候就要重新部署, 而每次重新部署都 ...