学习参考:

Dijkstra算法(单源最短路径)

最短路径—Dijkstra算法和Floyd算法

使用的图结构:

邻接矩阵:

-1 20 -1 25 80
-1 -1 40 -1 -1
-1 -1 -1 -1 10
-1 -1 20 -1 50
-1 -1 -1 -1 -1

代码:

     void Dijkstra(){//单源点最短路径
int i,j;
boolean s[]=new boolean[vexnum];
int dist[]=new int[vexnum];
int prev[]=new int[vexnum];
int v=0;
for(i=0;i<vexnum;i++){
dist[i]=adjMatrix[v][i];
s[i]=false;
if(dist[i]>0){
prev[i]=v;
}else{
prev[i]=-1;
}
}
dist[v]=0;
s[v]=true;
for(i=1;i<vexnum;i++){
int u=v;
int min=0x7FFFFFFF;
for(j=0;j<vexnum;j++){//把dist中的最小值加入S
if(s[j]==false && (dist[j]<min) && dist[j]!=-1){//j不在s中 ,j比最小值小
u=j;
min=dist[j];
}
}
s[u]=true;//结点u加入S中
//利用结点u更新dist
for(j=0;j<vexnum;j++){
if(s[j]==false && adjMatrix[u][j]!=-1){//j不在s中,并且u->j连通
int newdist=dist[u]+adjMatrix[u][j];//v->u + u->j
if(newdist<dist[j] || dist[j]==-1){
dist[j]=newdist;
prev[j]=u;
}
}
}
}
//-1 0 3 0 2
for(i=1;i<vexnum;i++){
System.out.print(i);
int t=prev[i];
while(t!=-1){
System.out.print("<--"+t);
t=prev[t];
}
System.out.println();
}
}

输出:

1<--0
2<--3<--0
3<--0
4<--2<--3<--0

另外一个测试数据:

可视化图结构:

邻接矩阵:

-1 -1 10 -1 30 100
-1 -1 5 -1 -1 -1
-1 -1 -1 50 -1 -1
-1 -1 -1 -1 -1 10
-1 -1 -1 20 -1 60
-1 -1 -1 -1 -1 -1

输出:

1
2<--0
3<--4<--0
4<--0
5<--3<--4<--0

Dijkstra单源点最短路径算法的更多相关文章

  1. Dijkstra 单源最短路径算法

    Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...

  2. 【模板 && 拓扑】 Dijkstra 单源最短路径算法

    话不多说上代码 链式前向星233 #include<bits/stdc++.h> using namespace std; ,_max=0x3fffffff; //链式前向星 struct ...

  3. Bellman-Ford 单源最短路径算法

    Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...

  4. Dijkstra——单源最短路径

    算法思想 ①从一个源点开始,找距离它最近的点顶点v ②然后以顶点v为起点,去找v能到达的顶点w,即v的邻居 比较源点直接到 v的距离和(源点到v的距离+v到w的距离) 若大于后者则更新源点的到w的开销 ...

  5. 单源点最短路径的Dijkstra算法

    在带权图(网)里,点A到点B所有路径中边的权值之和为最短的那一条路径,称为A,B两点之间的最短路径;并称路径上的第一个顶点为源点(Source),最后一个顶点为终点(Destination).在无权图 ...

  6. Bellman-Ford & SPFA 算法——求解单源点最短路径问题

    Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...

  7. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)

    一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...

  8. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  9. 经典贪心算法(哈夫曼算法,Dijstra单源最短路径算法,最小费用最大流)

    哈夫曼编码与哈夫曼算法 哈弗曼编码的目的是,如何用更短的bit来编码数据. 通过变长编码压缩编码长度.我们知道普通的编码都是定长的,比如常用的ASCII编码,每个字符都是8个bit.但在很多情况下,数 ...

随机推荐

  1. numpy delete方法

    import numpy as np lines = np.loadtxt(r'./test.txt',delimiter=',',dtype=int) print(lines) lines_copy ...

  2. Oracle 自定义函数实现列转行效果

    在 Oracle 领域,我相信一说到列转行大部分人都会立马想到 WM_CONCAT 函数,我觉得主要是因为该函数比较实用.但事实上 WM_CONCAT 并非官方公开函数,使用会存在一定的风险:函数返回 ...

  3. 出师表(ENGLISH) 强烈打call啊~王洛勇是什么神仙英语

    臣亮言:先帝创业未半而中道崩殂, Permit me to observe: the late emperor was taken from us before he could finish his ...

  4. git bash 使用自带 curl 命令出现乱码解决方法

    前言 使用过 git  的小伙伴应该都不会陌生,git 自带一个终端 git bash      类似于 window 自带的 dos git 官网下载:https://git-scm.com/dow ...

  5. 如何解决macbook pro摄像头不工作的问题

    背景:上周用qq视频聊天都正常,这周突然显示检测不到摄像头.打开facetime和photo booth也显示“相机未连接”排查一切问题后只好给苹果客服打电话,在客服的帮助下解决了这个问题. 解决办法 ...

  6. 【转帖】修改Windows网卡的MTU

    修改Windows网卡的MTU https://blog.csdn.net/sunny05296/article/details/103438653 原创sunny05296 发布于2019-12-0 ...

  7. 【转】.Net程序员学习Linux最简单的方法

    有很多关于Linux的书籍.博客.大多数都会比较“粗暴“的将一大堆的命令塞给读者,从而使很多.NET程序员望而却步.未入其门就路过了. 所以我设想用一种更为平滑的学习方式, 就是在学习命令时,先用纯语 ...

  8. 图解微信小程序---轮播图

    图解微信小程序---轮播图 代码笔记 第一步:在页面创建swiper组件 第二步:编写js页面 注意事项:wx:for渲染我们js中的图片数组,item默认写法,获取我们的图片数组中的图片,可通过增加 ...

  9. 【java】Java多线程总结之线程安全队列Queue【转载】

    原文地址:https://www.cnblogs.com/java-jun-world2099/articles/10165949.html ============================= ...

  10. HTML CSS布局定位

    我们在编写网页代码时,首先应该做的就是设计好页面的布局形式,然后再往里面填充内容.网页布局的好与坏,直接决定了网页最终的展示效果.PC端常见的网页布局形式有两列布局.三列布局等.在CSS中,我们通常使 ...