Spring Cloud Alibaba学习笔记(5) - 整合Sentinel及Sentinel规则
整合Sentinel
应用整合Sentinel
在dependencies中添加依赖,即可整合Sentinel
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
搭建Sentinel控制台
可以从这个地址:https://github.com/alibaba/Sentinel/releases 下载控制台应用。因为下载速度较慢,给出一个我下载的版本(1.6.3)
百度云地址:链接: https://pan.baidu.com/s/1UV4OzfjfuBZQfpPb28z0sw&shfl=sharepset 密码: i68g
运行命令启动控制台:java -jar sentinel-dashboard-1.6.3.jar
打开浏览器,输入http://localhost:8080进入控制台页面(账号密码默认sentinel)
应用整合Sentinel控制台
添加配置文件:
spring:
cloud:
sentinel:
transport:
# 指定sentinel控制台地址
dashboard: localhost:8080
PS:其他的配置项
spring:
cloud:
sentinel:
transport:
# 指定sentinel控制台地址
dashboard: localhost:8080
# 指定和控制台通信的IP,若不配置,会自动选择一个IP注册
client-ip: 127.0.0.1
# 指定和控制台通信的端口哦,默认值8719
# 若不配置,会自动扫猫从8719开始扫猫,依次+1,知道值找到未被占用的端口
port: 8719
# 心跳发送周期,默认值null
# 但在SimpleHttpHeartbeatSender会用默认值10秒
heartbeat-interval-ms: 10000
这样,就为应用整合好Sentinel了,应用发生请求后,控制台如下:
控制台配置规则
流控规则
打开Sentinel控制台,点击簇点链路,可以看见微服务曾经被访问过的路径
点击流控按钮,便可以为应用设置流控规则
- 资源名:唯一名称,默认请求路径
- 针对来源:Sentinel可以针对调用者进行限流,填写微服务名,默认default(不区分来源)
- 阈值类型/单机阈值:
- QPS(每秒钟的请求数量):当调用该api的QPS达到阈值的时候,进行限流
- 线程数:当调用该api的线程数达到阈值的时候,进行限流
- 是否集群:不需要集群,暂不研究
- 流控模式:
- 直接:api达到限流条件时,直接限流
- 关联:当关联的资源达到阈值时,就限流自己
- 链路:只记录指定链路上的流量(指定资源从入口资源进来的流量,如果达到阈值,就进行限流)【api级别的针对来源】
- 流控效果:
- 快速失败:直接失败,抛异常
- Warm Up:根据codeFactor(冷加载因子,默认3)的值,从阈值/codeFactor,经过预热时长,才达到设置的QPS阈值
- 排队等待:匀速排队,让请求以匀速的速度通过,阈值类型必须设置为QPS,否则无效
降级规则(断路器模式)
点击降级按钮,便可以为应用设置降级规则
降级策略:
- RT:平均响应时间(秒级统计)超出阈值且在时间窗口内的请求 >= 5时,触发降级;时间窗口结束后,关闭降级【Sentinel默认最大的RT为4900ms,可以通过-Dcsp.sentinel.statistic.max.rt=xxx修改】
- 异常比例:QPS >= 5 且异常比例(秒级统计)超过阈值时,触发降级;时间窗口结束后,关闭降级
- 异常数:异常数(分钟统计)超过阈值时,触发降级;时间窗口结束后,关闭降级【时间窗口 < 60秒可能会出现问题】
热点规则(热点参数限流规则)
Sentinel默认显示的端点并不支持热点规则,要显示热点规则,需要自己添加代码:
@GetMapping("test")
@SentinelResource("test")
public String testHot(@RequestParam(required = false) String a,
@RequestParam(required = false) String b) {
return a + "-" + b;
}
点击热点按钮,便可以为test设置热点规则
在时间窗口以内,一旦该api指定索引的参数QPS达到了域名,就会触发限流
- 参数索引:从0开始,上面的代码中:a的参数索引为0;b的参数索引为1【参数索引对应的参数必须时基本类型或者String】
系统规则
阈值类型
- LOAD(仅对 Linux/Unix-like 机器生效):当系统 load1 超过阈值,且系统当前的并发线程数超过系统容量时才会触发系统保护。系统容量由系统的 maxQps * minRt 计算得出。设定参考值一般是 CPU cores * 2.5
- RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒
- 线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护
- 入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护
- CPU 使用率:当系统 CPU 使用率超过阈值即触发系统保护(取值范围 0.0-1.0)
授权规则
点击授权按钮,便可以为应用设置授权规则
资源名所代表的资源只允许流控应用中添加的微服务使用(白名单)、不允许使用(黑名单)
代码配置规则
流控规则
参数
Field | 说明 | 默认值 |
---|---|---|
resource | 资源名,资源名是限流规则的作用对象 | |
count | 限流阈值 | |
grade | 限流阈值类型,QPS 或线程数模式 | QPS模式 |
limitApp | 流控针对的调用来源 | default,代表不区分调用来源 |
strategy | default,代表不区分调用来源 | 根据资源本身 |
controlBehavior | 流控效果(直接拒绝 / 排队等待 / 慢启动模式) | 直接拒绝 |
代码
private void initFlowQpsRule() {
List<FlowRule> rules = new ArrayList<>();
FlowRule rule = new FlowRule(resourceName);
// 设置QPS阈值为20
rule.setCount(20);
rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
rule.setLimitApp("default");
rules.add(rule);
FlowRuleManager.loadRules(rules);
}
降级规则
参数
Field | 说明 | 默认值 |
---|---|---|
resource | 资源名,即限流规则的作用对象 | |
count | 阈值 | |
grade | 降级模式,根据 RT 降级还是根据异常比例降级 | RT |
timeWindow | 降级的时间,单位为 s |
代码
private void initDegradeRule() {
List<DegradeRule> rules = new ArrayList<>();
DegradeRule rule = new DegradeRule();
rule.setResource(KEY);
// set threshold RT, 10 ms
rule.setCount(10);
rule.setGrade(RuleConstant.DEGRADE_GRADE_RT);
rule.setTimeWindow(10);
rules.add(rule);
DegradeRuleManager.loadRules(rules);
}
热点规则
参数
Field | 说明 | 默认值 |
---|---|---|
resource | 资源名,必填 | |
count | 限流阈值,必填 | |
grade | 限流模式 | QPS 模式 |
durationInSec | 统计窗口时间长度(单位为秒) | 1s |
controlBehavior | 流控效果(支持快速失败和匀速排队模式) | 快速失败 |
maxQueueingTimeMs | 最大排队等待时长(仅在匀速排队模式生效) | 0ms |
paramIdx | 热点参数的索引,必填,对应 SphU.entry(xxx, args) 中的参数索引位置 | |
paramFlowItemList | 参数例外项,可以针对指定的参数值单独设置限流阈值,不受前面 count 阈值的限制。仅支持基本类型 | |
clusterMode | 是否是集群参数流控规则 | false |
clusterConfig | 集群流控相关配置 |
代码
ParamFlowRule rule = new ParamFlowRule(resourceName)
.setParamIdx(0)
.setCount(5);
// 针对 int 类型的参数 PARAM_B,单独设置限流 QPS 阈值为 10,而不是全局的阈值 5.
ParamFlowItem item = new ParamFlowItem().setObject(String.valueOf(PARAM_B))
.setClassType(int.class.getName())
.setCount(10);
rule.setParamFlowItemList(Collections.singletonList(item));
ParamFlowRuleManager.loadRules(Collections.singletonList(rule));
系统规则
参数
Field | 说明 | 默认值 |
---|---|---|
highestSystemLoad | 最大的 load1 | -1(不生效) |
avgRt | 所有入口流量的平均响应时间 | -1(不生效) |
maxThread | 入口流量的最大并发数 | -1(不生效) |
qpa | 所有入口资源的 QPS | -1(不生效) |
代码
private void initSystemRule() {
List<SystemRule> rules = new ArrayList<>();
SystemRule rule = new SystemRule();
rule.setHighestSystemLoad(10);
rules.add(rule);
SystemRuleManager.loadRules(rules);
}
授权规则
参数
Field | 说明 | 默认值 |
---|---|---|
resource | 资源名,即限流规则的作用对象 | |
limitApp | 对应的黑名单/白名单,不同 origin 用 , 分隔,如 appA,appB | default,代表不区分调用来源 |
strategy | 限制模式,AUTHORITY_WHITE 为白名单模式,AUTHORITY_BLACK 为黑名单模式,默认为白名单模式 | AUTHORITY_WHITE |
代码
AuthorityRule rule = new AuthorityRule();
rule.setResource("test");
rule.setStrategy(RuleConstant.AUTHORITY_WHITE);
rule.setLimitApp("appA,appB");
AuthorityRuleManager.loadRules(Collections.singletonList(rule));
Spring Cloud Alibaba学习笔记(5) - 整合Sentinel及Sentinel规则的更多相关文章
- Spring Cloud Alibaba学习笔记(1) - 整合Spring Cloud Alibaba
Spring Cloud Alibaba从孵化器版本毕业:https://github.com/alibaba/spring-cloud-alibaba,记录一下自己学习Spring Cloud Al ...
- Spring Cloud Alibaba学习笔记(15) - 整合Spring Cloud Gateway
Spring Cloud Gateway 概述 Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于Netty.Reactor以及WEbFlux构建,它 ...
- Spring Cloud Alibaba学习笔记
引自B站楠哥:https://space.bilibili.com/434617924 一.创建父工程 创建父工程hello-spring-cloud-alibaba Spring Cloud Ali ...
- Spring Cloud Alibaba学习笔记(3) - Ribbon
1.手写一个客户端负载均衡器 在了解什么是Ribbon之前,首先通过代码的方式手写一个负载均衡器 RestTemplate restTemplate = new RestTemplate(); // ...
- Spring Cloud Alibaba学习笔记(22) - Nacos配置管理
目前业界流行的统一配置管理中心组件有Spring Cloud Config.Spring Cloud Alibaba的Nacos及携程开源的Apollo,本文将介绍Nacos作为统一配置管理中心的使用 ...
- Spring Cloud Alibaba学习笔记(2) - Nacos服务发现
1.什么是Nacos Nacos的官网对这一问题进行了详细的介绍,通俗的来说: Nacos是一个服务发现组件,同时也是一个配置服务器,它解决了两个问题: 1.服务A如何发现服务B 2.管理微服务的配置 ...
- Spring Cloud Alibaba学习笔记(7) - Sentinel规则持久化及生产环境使用
Sentinel 控制台 需要具备下面几个特性: 规则管理及推送,集中管理和推送规则.sentinel-core 提供 API 和扩展接口来接收信息.开发者需要根据自己的环境,选取一个可靠的推送规则方 ...
- Spring Cloud Alibaba学习笔记(6) - Sentinel使用总结
使用Sentinel API Sentinel主要有三个核心Api: SphU:定义资源,让资源收到监控,保护资源 SphU 包含了 try-catch 风格的 API.用这种方式,当资源发生了限流之 ...
- Spring Cloud Alibaba学习笔记(23) - 调用链监控工具Spring Cloud Sleuth + Zipkin
随着业务发展,系统拆分导致系统调用链路愈发复杂一个前端请求可能最终需要调用很多次后端服务才能完成,当整个请求陷入性能瓶颈或不可用时,我们是无法得知该请求是由某个或某些后端服务引起的,这时就需要解决如何 ...
随机推荐
- Mosquitto--webServer应用测试结果
https://blog.csdn.net/u012377333/article/details/71123671 Mosquitto--webServer应用测试结果 一.测试环境介绍 二.测试流程 ...
- 京东 PC 首页 2019 改版前端总结 原创: 何Jason,EC,小屁 凹凸实验室 今天
京东 PC 首页 2019 改版前端总结 原创: 何Jason,EC,小屁 凹凸实验室 今天
- Visual Studio IronPython CPython
安装 IronPython - 张善友 - 博客园https://www.cnblogs.com/shanyou/archive/2006/09/14/504580.html VS2017作为pyth ...
- iptables 配置 场景1
这样配置完成后,没法完成本地回环,需要对lo网卡进行配置 本地报文无法发出,继续添加规则
- 贪心:leetcode 870. Advantage Shuffle、134. Gas Station、452. Minimum Number of Arrows to Burst Balloons、316. Remove Duplicate Letters
870. Advantage Shuffle 思路:A数组的最大值大于B的最大值,就拿这个A跟B比较:如果不大于,就拿最小值跟B比较 A可以改变顺序,但B的顺序不能改变,只能通过容器来获得由大到小的顺 ...
- Dart 变量、常量和命名规则
/* Dart 变量: dart是一个强大的脚本类语言,可以不预先定义变量类型 ,自动会类型推导 dart中定义变量可以通过var关键字可以通过类型来申明变量 如: var str='this is ...
- postgresql 臭氧8小时聚合函数
1.定义数据拼接函数 CREATE OR REPLACE FUNCTION "public"."sfun"("results" _numer ...
- 增强篇3 SAP表字段增强
有两种方式: Include 和 Append 1.INCLUDE一般都是标准预留的增强: 以CO01生产订单增强字段为例 在表AUFK中INCLUDE的结构“CI_AUFK”加入自定义字段 保存 ...
- intellij maven配置与使用
目录 intellij maven配置与使用 Maven 常用设置介绍 Maven 骨架创建 Java Web 项目 Maven 组件来管理项目 @(目录) intellij maven配置与使用 M ...
- 【大产品思路】Amazon
http://www.woshipm.com/it/2844056.html 强烈赞同,对复杂业务,分布团队和开发可以借鉴. “ 这种公司级“微服务(Microservice)”架构的好处在于,每个团 ...