SiamRPN: High Performance Visual Tracking with Siamese Region Proposal Network
High Performance Visual Tracking with Siamese Region Proposal Network
2018-11-26 18:32:02
Paper:http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf
PyTorch Code:https://github.com/songdejia/siamese-RPN-pytorch
Train Code: https://github.com/MathsXDC/DaSiamRPNWithOfflineTraining
TensorFlow Code:https://github.com/makalo/Siamese-RPN-tensorflow
Reference Code:https://github.com/zkisthebest/Siamese-RPN
Another Implementation based on PyTorch with deeper and wider backbone network (SiamDW, CVPR-2019): https://github.com/researchmm/SiamDW (all the train and test code !!!)
1. Background and Motivation :
现有的跟踪方法主要分为两种:
1). 相关滤波跟踪方法;也有将 deep feature 结合到 CF 方法中,但是速度不够快;
2). 完全基于深度网络的跟踪方法,由于没有用到 domain-specific information,效果并不是很突出。
本文将 RPN 引入到跟踪过程中,极大地改善了跟踪效果。主要包含两个分支:
1). Template branch;
2). Detection branch;
在测试阶段,作者将其看做是:local one-shot detection framework,第一帧中的 BBox 仅提供 exemplar。作者将 template branch 重新看做是参数来预测 detection kernels,类似于 meta-learner。meata-learner 和 detection branch 都仅仅用 RPN 的监督来进行端到端的训练。在 online tracking 过程中,Template branch 会被修剪以达到加速的目的。本文所提出的方法也是第一次将 online tracking 看做是 one-shot detection 任务。
本文所提出的 Siamese RPN 的流程图如下所示:

2. Siamese-RPN framework:
2.1 Siamese feature extraction subnetwork
在孪生网络中, 作者采用不带 padding 的全卷积网络。骨干网络是修改后的 AlexNet,Siamese tracker 的示意图如下:

2.2 Region Proposal Subnetwork
该 RPN 子网络包含两个部分:pair-wise correlation section 以及 supervision section。
Supervision section 包含两个分支:一个是用于前景和背景分类的分支,另一个分支用于 proposal 回归。
如果有 k 个 anchors,网络需要输出 2k channel 以进行分类,4k channels 以进行回归。所以,pair-wise correlation 首先增加 channel 个数为两个部分。另一个分支也分为两路,即:reg 和 cls。Template 分支输出的 feature 可以看做是 “kernel”,在 search region 的 feature 上进行卷积操作。在 classification 和 regression branch 上都要进行 correlation 操作:

当进行训练时,作者采用 Faster RCNN 的损失函数。用交叉熵损失函数来训练 classification 分支,L1 loss 用于 regression 分支的训练。
Ax, Ay, Aw, Ah 代表 anchor boxes 的中心点和形状,Tx, Ty, Tw, Th 代表 GT boxes,所以,归一化的距离可以表达为:

然后,其通过 L1 loss,具体表达形式为:

最终,作者优化的损失函数为:

其中,Lcls 是交叉熵损失,Lreg 是:

2.3 Training Phase
在训练阶段,ImageNet VID 和 Youtube-BB 被用于采集 sample pairs 来进行相似度匹配的训练。
anchors 的选择是基于 IoU 进行的,当 IoU 大于设定的阈值(文中设置为 0.6),并且是正样本的时候,被当做是 anchors。负样本则认为是那些 IoU 低于 0.3 的。
对于一个 training pair,作者设置最多 16 个正样本,总共 64 个样本。
3. Tracking as one-shot detection:
==
SiamRPN: High Performance Visual Tracking with Siamese Region Proposal Network的更多相关文章
- RPN(region proposal network)之理解
在faster-r-cnn 中,因为引入rpn层,使得算法速度变快了不少,其实rpn主要作用预测的是 “相对的平移,缩放尺度”,rpn提取出的proposals通常要和anchor box进行拟合回归 ...
- 【论文阅读】An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches
懒得转成文字再写一遍了,直接把做过的PPT放出来吧. 论文连接:https://link.zhihu.com/?target=https%3A//arxiv.org/pdf/1804.09003v1. ...
- 论文笔记:Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking
Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking 2019-03-20 16:45:23 Paper:ht ...
- Summary on Visual Tracking: Paper List, Benchmarks and Top Groups
Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...
- 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)
论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...
- 目标检测(四)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
作者:Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun SPPnet.Fast R-CNN等目标检测算法已经大幅降低了目标检测网络的运行时间. ...
- [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
将 RCN 中下面 3 个独立模块整合在一起,减少计算量: CNN:提取图像特征 SVM:目标分类识别 Regression 模型:定位 不对每个候选区域独立通过 CN 提取特征,将整个图像通过 CN ...
- 深度学习论文翻译解析(十三):Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Regi ...
随机推荐
- python(列表函数)
一.列表函数 1.sort()原址排序 参数默认reverse=False时为正序排序 list1 = [1,3,5,2,1,23,18] list1.sort() print (list1) 当参数 ...
- Flask之threading.loacl方法
一.threading.loacl方法 import threading import time class Foo: pass foo = Foo() def func(num): foo.num ...
- Mac下iTerm2配置lrzsz功能
Mac下iTerm2配置lrzsz功能 rz,sz是Linux/Unix同Windows进行ZModem文件传输的命令行工具. 优点就是不用再开一个sftp工具登录上去上传下载文件. 近期在mac上通 ...
- GooglePlay测试支付遇到的问题
推荐谷歌安装器,可以方便地安装谷歌框架及服务 问题列表 1.测试支付时出现:需要验证身份.您需要登录自己google账号 解决:我是使用VPN,VPN地区是日本,但我在google后台设置的发布(下载 ...
- IDEA实用教程(九)—— 创建Servlet
4. 创建Servlet 1) 第一步 2) 第二步 3) 第三步 4) 第四步 由于新创建的Web项目, 没有Tomcat环境, 所以创建的Servlet会发生导包错误,如下图所示 : 因此我们需要 ...
- SQL EXPLAIN优化详解
使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是 如何处理你的SQL语句的.分析你的查询语句或是表结构的性能瓶颈.使用方式:Explain+SQL语句执行计划包含的信息: ...
- rxjs 入门--环境配置
原文: https://codingthesmartway.com/getting-started-with-rxjs-part-1-setting-up-the-development-enviro ...
- 零基础如何学好Python 之int 数字整型类型 定义int()范围大小转换
本文主题是讲python数字类型python int整型使用方法及技巧.它是不可变数据类型中的一种,它的一些性质和字符串是一样的,注意是整型不是整形哦. Python int有多种数字类型:整型int ...
- 《hello-world》第九次团队作业:【Beta】Scrum meeting 2
项目 内容 这个作业属于哪个课程 2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十三 团队作业9:Beta冲刺与团队项目验收 团队名称 <hello--wor ...
- 四大网络之Alexnet
本文主要介绍AlextNet的一些知识,这些知识经常被忽略 一.AlextNet的创新点 (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Si ...