忍者钩爪 ( ninja) 题解———2019.10.19
可以到这里测。。嘿嘿嘿
题目:
【问题 描述 】
小 Q 是一名酷爱钩爪的忍者, 最喜欢飞檐走壁的感觉, 有一天小 Q 发现一个练习使用钩
爪的好地方,决定在这里大显身手。
场景的天花板可以被描述为一个无穷长的数轴, 初始小 Q 挂在 原点上。 数轴上有 N 个坐
标为整数的圆环供小 Q 实现钩爪移动。具体操作为:小 Q 可以将钩爪挂到圆环上,进而荡到
关于圆环坐标 轴 对称的位置。例如小 Q 在 ,圆环在 ,则小 Q 可以通过该圆环移动到 。
现在一个问题难倒了小 Q,如何判断自己能否到达某个整点呢?
【 输入格式 】
第一行两个整数 N,M,表示圆环的数量和询问组数
接下来一行共 N 个整数描述每个圆环的坐标(可重复)
接下来 M 行每行包含一个整数描述询问
【 输出格式 】
共 M 行对应 M 个询问,若小 Q 能移动到目标点,输出 Yes,否则输出 No
【 样例输入 】 【 样例输出 】
No
Yes
【 数据范围和注释 】
对于 %的数据,M≤N≤,输入坐标绝对值均小于 。
对于 %的数据,M≤N≤。
对于 %的数据,M≤N≤,输入坐标绝对值均小于 ^。
对于30%的分数
可以使用暴力记忆化搜索得出答案。即维护每个坐标是否可达,继而进行搜索。
对于60%的分数
通过观察可知设当前坐标为x,则通过坐标为a的圆环可移动到2a-x处。连续通过两个圆环(a,b)可以移动到x+(2b-2a)处。
先以移动步数为偶数情况考虑简化版问题:设圆环坐标为a[1]~a[n],对于任意两个圆环,可由坐标x变为x+2(a[j]-a[i]),题目转化为对于N^2个数其中b[i,j]=2(a[j]-a[i]),通过有限次加减运算能否由x=0变化至目标。
根据广义裴蜀定理以及扩展欧几里得相关原理可知,当且仅当目标为gcd的倍数时有解。故预处理出全部可能的2(a[j]-a[i]),求出其最大公约数,在判断目标是否为gcd的倍数即可。
对于奇数的情况,可以通过枚举第一步的方案转化为偶数的情况,即维护一个set表示0步或1步可达点集(mod gcd意义下),再查询目标点在mod gcd下是否属于这个集合即可。复杂度瓶颈在于N^2个数求gcd。
对于100%的分数
通过欧几里得算法的性质与更相减损术可知gcd(a,b)=gcd(a-b,b)。设p1={2*(a[i]-a[1])|i>1}的最大公约数,设p2={2*(a[i]-a[j])}的最大公约数,易知p1>=p2(因为p1比p2约束宽松)。而对于任意i,j由于p1同时是2*(a[i]-a[1])、2*(a[j]-a[1])的约束,那么p1也一定是任意2*(a[i]-a[1])-2*(a[j]-a[1])=2*(a[i]-a[j])的约数,故p1<=p2。综上所述p1=p2,这样就不需要N^2个数同时求gcd了,只求p1即可,可获得满分。
附赠std:
#include <iostream>
#include <cstdio>
#include <set>
using namespace std;
const int N=;
int n,m;
long long a[N],GCD=;
set<long long> Set;
long long gcd(long long a,long long b)
{
return b?gcd(b,a%b):a;
}
long long qabs(long long x){return x<?-x:x;}
int main()
{
// freopen("ninja.in","r",stdin);
// freopen("ninja.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=;i<=n;i++)
GCD=gcd(2LL*qabs(a[i]-a[]),GCD);
if(GCD==)GCD=1000000000LL*1000000000LL;
Set.insert(0LL);
for(int i=;i<=n;i++)
Set.insert(((*a[i])%GCD+GCD)%GCD);
while(m--)
{
long long q;
scanf("%lld",&q);
if(Set.find((q%GCD+GCD)%GCD)!=Set.end())
puts("Yes");
else
puts("No");
}
// fclose(stdin);
// fclose(stdout);
return ;
}
忍者钩爪 ( ninja) 题解———2019.10.19的更多相关文章
- C 题解———2019.10.16
现在很痛苦,等过阵子回头看看,会发现其实那都不算事. [题目描述]定义一个排列 a 的价值为满足|a[i]-i|<=1 的 i 的数量.给出三个正整数 n,m,p,求出长度为 n 且价值恰好为 ...
- B 题解————2019.10.16
相信他说的话,但不要当真 [题目描述]有一个长度为 n 的自然数序列 a,要求将这个序列恰好分成至少 m 个连续子段. 每个子段的价值为该子段的所有数的按位异或.要使所有子段的价值按位与的结果最大,输 ...
- A 题解————2019.10.16
[题目描述] 对于给定的一个正整数n, 判断n是否能分成若干个正整数之和 (可以重复) ,其中每个正整数都能表示成两个质数乘积. [输入描述]第一行一个正整数 q,表示询问组数.接下来 q 行,每行一 ...
- Fiborial 题解——2019.10.14
一看到这个题 就感觉...cao,, 什么东西...??! 然后就开始暴力求Fn 然鹅我并不会写高精(我太菜了) 只能求到大概10左右 在吧Fn给质因数分解 求出其因子个数 妄图找到什么有关的规律 但 ...
- T1 :最小值(min)题解 ——2019.10.15
思路: 对于 % 30 的数据,可以想到一个 Dp 方程: 其中dp[i]表示分割[1,i]的最大答案 代码: #include<cstdio> #include<cstring&g ...
- 2019.10 搜索引擎最新排名,Elasticsearch遥遥领先
大数据的搜索平台已经成为了众多企业的标配,Elasticsearch.Splunk(商业上市公司).Solr(Apache开源项目)是其中最为优秀和流行的选择.在2019.10 最新搜索引擎排名中,E ...
- 【2019.10.17】十天Web前端程序员体验(软件工程实践第五次作业)
结对信息.具体分工 Github地址:https://github.com/MokouTyan/131700101-031702425 学号 昵称 主要负责内容 博客地址 131700101 莫多 代 ...
- TIZ_c 第0周总结(2019/10/15-2019/10/22)工欲善其事必先利其器
TIZ_c 第0周总结(2019/10/15-2019/10/22)工欲善其事必先利其器 任务清单 给自己取一个酷酷的id,并选择1-2个喜欢的方向.(只是初步选择,后期可更改) 改下群名片.例如yo ...
- 背水一战 Windows 10 (19) - 绑定: TemplateBinding 绑定, 与 RelativeSource 绑定, 与 StaticResource 绑定
[源码下载] 背水一战 Windows 10 (19) - 绑定: TemplateBinding 绑定, 与 RelativeSource 绑定, 与 StaticResource 绑定 作者:we ...
随机推荐
- win10 x64 VS2017 PJSIP 视频通话编译流程
win10 x64 VS2017 PJSIP 视频通话编译流程 1. 下载PJSIP源码 PJSIP源码下载地址:https://www.pjsip.org/ 2. 阅读一遍官方的文档 文档地址:ht ...
- 【12月13日】A股ROE最高排名
个股滚动ROE = 最近4个季度的归母净利润 / ((期初归母净资产 + 期末归母净资产) / 2). 查看更多个股ROE最高排名 中公教育(SZ002607) - ROE_TTM:92.66% - ...
- SpringMVC_处理器方法的返回值
一.返回ModelAndView 若处理器方法处理完后,需要跳转到其他资源,且又要在跳转的资源间传递数据,此时处理器方法返回ModelAndView比较好.当然,若要返回ModelAndView ...
- gperf heap profiler
前言 gperf tools有很多功能,其中有一个heap profiler,可按函数级别定位分配内存的累积量 原理 gperf tools需要替换libc的malloc库,替换为tcmalloc:t ...
- python 多进程和多线程对比
1. 对于耗费CPU的操作来说,多进程优于多线程 2. 对于耗费IO操作来说,多线程优于多进程 3. 多进程切换代价大于多线程
- A Pattern Language for Parallel Programming
The pattern language is organized into four design spaces. Generally one starts at the top in the F ...
- 面试官常问的Nginx的几个问题
1.什么是Nginx? Nginx是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器 Nginx是一款轻量级的Web服务器/反向代理服务器及电子邮件(IMAP/POP3 ...
- Yapi接口管理平台 本地部署 windows环境 -
YApi 是高效.易用.功能强大的 api 管理平台,旨在为开发.产品.测试人员提供更优雅的接口管理服务.可以帮助开发者轻松创建.发布.维护 API,YApi 还为用户提供了优秀的交互体验,开发人员只 ...
- jvm常用排错命令
jvm命令很多,有一篇博客整理的非常全 https://www.cnblogs.com/ityouknow/p/5714703.html.我只列举一些常用的排错用到的. jps -l -v ...
- jenkins+robotframework邮件发送报告模板
1.Jenkins中配置系统邮件系统管理–系统设置,配置Extended E-mail Notification 2.jenkins 创建一个新项目,项目创建成功,配置邮件