RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。

如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。

径向基函数解决插值问题

完全内插法要求插值函数经过每个样本点,即。样本点总共有P个。

RBF的方法是要选择P个基函数,每个基函数对应一个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。||X-Xp||表示差向量的模,或者叫2范数。

基于为径向基函数的插值函数为:

输入X是个m维的向量,样本容量为P,P>m。可以看到输入数据点Xp是径向基函数φp的中心。

隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。

将插值条件代入:

写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度无关,当Φ可逆时,有

对于一大类函数,当输入的X各不相同时,Φ就是可逆的。下面的几个函数就属于这“一大类”函数:

1)Gauss(高斯)函数

2)Reflected Sigmoidal(反常S型)函数

3)Inverse multiquadrics(拟多二次)函数

σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。

完全内插存在一些问题:

1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。

由于输入样本中包含噪声,所以我们可以设计隐藏层大小为K,K<P,从样本中选取K个(假设不包含噪声)作为Φ函数的中心。

2)基函数个数等于训练样本数目,当训练样本数远远大于物理过程中固有的自由度时,问题就称为超定的,插值矩阵求逆时可能导致不稳定。

拟合函数F的重建问题满足以下3个条件时,称问题为适定的:

  1. 解的存在性
  2. 解的唯一性
  3. 解的连续性

不适定问题大量存在,为解决这个问题,就引入了正则化理论。

正则化理论

正则化的基本思想是通过加入一个含有解的先验知识的约束来控制映射函数的光滑性,这样相似的输入就对应着相似的输出。

寻找逼近函数F(x)通过最小化下面的目标函数来实现:

加式的第一项好理解,这是均方误差,寻找最优的逼近函数,自然要使均方误差最小。第二项是用来控制逼近函数光滑程度的,称为正则化项,λ是正则化参数,D是一个线性微分算子,代表了对F(x)的先验知识。曲率过大(光滑度过低)的F(x)通常具有较大的||DF||值,因此将受到较大的惩罚。

直接给出(1)式的解:

权向量********************************(2)

G(X,Xp)称为Green函数,G称为Green矩阵。Green函数与算子D的形式有关,当D具有旋转不变性和平移不变性时,。这类Green函数的一个重要例子是多元Gauss函数:

正则化RBF网络

输入样本有P个时,隐藏层神经元数目为P,且第p个神经元采用的变换函数为G(X,Xp),它们相同的扩展常数σ。输出层神经元直接把净输入作为输出。输入层到隐藏层的权值全设为1,隐藏层到输出层的权值是需要训练得到的:逐一输入所有的样本,计算隐藏层上所有的Green函数,根据(2)式计算权值。

广义RBF网络

Cover定理指出:将复杂的模式分类问题非线性地映射到高维空间将比投影到低维空间更可能线性可分。

广义RBF网络:从输入层到隐藏层相当于是把低维空间的数据映射到高维空间,输入层细胞个数为样本的维度,所以隐藏层细胞个数一定要比输入层细胞个数多。从隐藏层到输出层是对高维空间的数据进行线性分类的过程,可以采用单层感知器常用的那些学习规则,参见神经网络基础和感知器

注意广义RBF网络只要求隐藏层神经元个数大于输入层神经元个数,并没有要求等于输入样本个数,实际上它比样本数目要少得多。因为在标准RBF网络中,当样本数目很大时,就需要很多基函数,权值矩阵就会很大,计算复杂且容易产生病态问题。另外广RBF网与传统RBF网相比,还有以下不同:

  1. 径向基函数的中心不再限制在输入数据点上,而由训练算法确定。
  2. 各径向基函数的扩展常数不再统一,而由训练算法确定。
  3. 输出函数的线性变换中包含阈值参数,用于补偿基函数在样本集上的平均值与目标值之间的差别。

因此广义RBF网络的设计包括:

结构设计--隐藏层含有几个节点合适

参数设计--各基函数的数据中心及扩展常数、输出节点的权值。

下面给出计算数据中心的两种方法:

  1. 数据中心从样本中选取。样本密集的地方多采集一些。各基函数采用统一的偏扩展常数:


    dmax是所选数据中心之间的最大距离,M是数据中心的个数。扩展常数这么计算是为了避免径向基函数太尖或太平。

  2. 自组织选择法,比如对样本进行聚类、梯度训练法、资源分配网络等。各聚类中心确定以后,根据各中心之间的距离确定对应径向基函数的扩展常数。

    λ是重叠系数。

接下来求权值W时就不能再用了,因为对于广义RBF网络,其行数大于列数,此时可以求Φ伪逆。

数据中心的监督学习算法

最一般的情况,RBF函数中心、扩展常数、输出权值都应该采用监督学习算法进行训练,经历一个误差修正学习的过程,与BP网络的学习原理一样。同样采用梯度下降法,定义目标函数为

ei为输入第i个样本时的误差信号。

上式的输出函数中忽略了阈值。

为使目标函数最小化,各参数的修正量应与其负梯度成正比,即

具体计算式为

上述目标函数是所有训练样本引起的误差总和,导出的参数修正公式是一种批处理式调整,即所有样本输入一轮后调整一次。目标函数也可以为瞬时值形式,即当前输入引起的误差

此时参数的修正值为:


下面我们就分别用本文最后提到的聚类的方法和数据中心的监督学习方法做一道练习题。

考虑Hermit多项式的逼近问题

训练样本这样产生:样本数P=100,xi且服从[-4,4]上的均匀分布,样本输出为F(xi)+ei,ei为添加的噪声,服从均值为0,标准差为0.1的正态分布。

(1)用聚类方法求数据中心和扩展常数,输出权值和阈值用伪逆法求解。隐藏节点数M=10,隐藏节点重叠系数λ=1,初始聚类中心取前10个训练样本。

(2)用梯度下降法训练RBF网络,设η=0.001,M=10,初始权值为[-0.1,0.1]内的随机数,初始数据中心为[-4,4]内的随机数,初始扩展常数取[0.1,0.3]内的随机数,目标误差为0.9,最大训练次数为5000。

径向基函数(RBF)神经网络的更多相关文章

  1. RBF(径向基)神经网络

    只要模型是一层一层的,并使用AD/BP算法,就能称作 BP神经网络.RBF 神经网络是其中一个特例.本文主要包括以下内容: 什么是径向基函数 RBF神经网络 RBF神经网络的学习问题 RBF神经网络与 ...

  2. RBF神经网络——直接看公式,本质上就是非线性变换后的线性变化(RBF神经网络的思想是将低维空间非线性不可分问题转换成高维空间线性可分问题)

    Deeplearning Algorithms tutorial 谷歌的人工智能位于全球前列,在图像识别.语音识别.无人驾驶等技术上都已经落地.而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶 ...

  3. SVM中径向基函数与高斯核的区别 Difference between RBF and Gaussian kernel in SVM

    Radial Basis Functions (RBFs) are set of functions which have same value at a fixed distance from a ...

  4. RBF神经网络和BP神经网络的关系

    作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  5. RBF神经网络

    RBF神经网络 RBF神经网络通常只有三层,即输入层.中间层和输出层.其中中间层主要计算输入x和样本矢量c(记忆样本)之间的欧式距离的Radial Basis Function (RBF)的值,输出层 ...

  6. RBF神经网络学习算法及与多层感知器的比较

    对于RBF神经网络的原理已经在我的博文<机器学习之径向基神经网络(RBF NN)>中介绍过,这里不再重复.今天要介绍的是常用的RBF神经网络学习算法及RBF神经网络与多层感知器网络的对比. ...

  7. RBF神经网络的matlab简单实现

    径向基神经网络 1.径向基函数 (Radial Basis Function,RBF) 神经网络是一种性能良好的前向网络,具有最佳逼近.训练简洁.学习收敛速度快以及克服局部最小值问题的性能,目前已经证 ...

  8. 基于HHT和RBF神经网络的故障检测——第二篇论文读后感

    故障诊断主要包括三部分: 1.故障信号检测方法(定子电流信号检测 [ 定子电流幅值和电流频谱 ] ,振动信号检测,温度信号检测,磁通检测法,绝缘检测法,噪声检测法) 2.故障信号的处理方法,即故障特征 ...

  9. RBF神经网络通用函数 newrb, newrbe

      RBF神经网络通用函数 newrb, newrbe 1.newrb 其中P为输入向量,T为输出向量,GOAL为均方误差的目标,SPREED为径向基的扩展速度.返回值是一个构建好的网络,用newrb ...

随机推荐

  1. android控件---自定义带文本的ImageButton

    由于SDK提供的ImageButton只能添加图片,不能添加文字:而Button控件添加的文字只能显示在图片内部:当我们需要添加文字在图片外部时就不能满足我们的需求了,顾只能自己写个自定义ImageB ...

  2. Poj 1050 分类: Translation Mode 2014-04-04 09:31 103人阅读 评论(0) 收藏

    To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39058   Accepted: 20629 Desc ...

  3. apple开发者账号申请

    1.  登陆appleID. 2. 进入 Your Account 3. 在Account Summary 中的MemberShips中选择第一个(界面大概如下) 4.选择后进入下图. 5. yes ...

  4. JS设计模式——5.单体模式

    JS设计模式——5.单体模式 http://www.cnblogs.com/JChen666/p/3610585.html   单体模式的优势 用了这么久的单体模式,竟全然不知!用它具体有哪些好处呢? ...

  5. ASP.NET的一套笔试题

    1.    自定义控件如何做?答:自定义控件,跟HtmlControl或WebControl相似,编译后可以添加引用到工具栏里面,直接用鼠标拖动使用.2.界面的布局?答:表格,div3.程序的执行过程 ...

  6. hdu 4061 A Card Game

    思路: 分析:假设取的牌顺序是一个序列,那么这种序列在末尾为1时是和取牌序列一一对应的,且是符合“游戏结束时牌恰好被取完”的一种情况. 简证:1.在序列中,任一数 i 的后一个数 j 是必然要放在第 ...

  7. Changing the Overridden Method’s Characteristics

    修改重写方法的特征 在大多数情况下,我们重写(override)一个 virtual 方法是为了改变它的实现.然后,有时我们却想改变该 virtual 方法的其他的特征,这往往会带来一系列问题. 1) ...

  8. BZOJ 3224: Tyvj 1728 普通平衡树 vector

    3224: Tyvj 1728 普通平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除 ...

  9. sql只修改第一二行数据

    update t_table set colname=*  where a=1 order by id desc limit 1,2

  10. centOS学习part4:安装配置vsftp

    0 上一章(http://www.cnblogs.com/souvenir/p/3875934.html)我们完成了对远程工具VNC的安装配置,接下来我们将安装另外一个常用工具:VSFTP. vsft ...