题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760

Given a weighted directed graph, we define the shortest path as the path who has the smallest length among all the path connecting the source vertex to the target vertex. And if two path is said to be non-overlapping, it means that the two path has no common edge. So, given a weighted directed graph, a source vertex and a target vertex, we are interested in how many non-overlapping shortest path could we find out at most.

题目描述:求一个有向图起点到终点的边不相交的最短路径的条数。

算法分析:floyd+最大流。针对网络流算法而建的模型中,s-t对应于实际中每一种方案,所以此题中的s-t就对应于题目中的一条源点到汇点的最短路径,最大流就是最短路径条数。

接下来就是怎么建模的问题:既然s-t对应于一条最短路径,那么s-t路径上的每一条边都是路径中的最短边。所以首先用floyd求出点到点的最短路径,然后枚举每条边判断是否是最短路径上的边,若是,则加入到新建的图中,权值为1。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#define inf 0x7fffffff
using namespace std;
const int maxn=+; int n,from,to;
int dist[maxn][maxn],an[maxn][maxn];
int d[maxn],graph[maxn][maxn]; int bfs()
{
memset(d,,sizeof(d));
d[from]=;
queue<int> Q;
Q.push(from);
while (!Q.empty())
{
int u=Q.front() ;Q.pop() ;
for (int v= ;v<n ;v++)
{
if (!d[v] && graph[u][v]>)
{
d[v]=d[u]+;
Q.push(v);
if (v==to) return ;
}
}
}
return ;
} int dfs(int u,int flow)
{
if (u==to || flow==) return flow;
int cap=flow;
for (int v= ;v<n ;v++)
{
if (d[v]==d[u]+ && graph[u][v]>)
{
int x=dfs(v,min(cap,graph[u][v]));
cap -= x;
graph[u][v] -= x;
graph[v][u] += x;
if (cap==) return flow;
}
}
return flow-cap;
} int dinic()
{
int sum=;
while (bfs()) sum += dfs(from,inf);
return sum;
} int main()
{
while (scanf("%d",&n)!=EOF)
{
for (int i= ;i<n ;i++)
{
for (int j= ;j<n ;j++)
{
scanf("%d",&an[i][j]);
dist[i][j]=an[i][j];
}
dist[i][i]=an[i][i]=;
}
scanf("%d%d",&from,&to);
if (from==to) {printf("inf\n");continue; }
for (int k= ;k<n ;k++)
{
for (int i= ;i<n ;i++) if (i!=k)
{
for (int j= ;j<n ;j++) if (j!=k && j!=i)
{
if (dist[i][k]!=- && dist[k][j]!=- &&
(dist[i][j]==- || dist[i][j]>dist[i][k]+dist[k][j]))
dist[i][j]=dist[i][k]+dist[k][j];
}
}
}
//cout<<"dist[from][to]= "<<dist[from][to]<<endl;
if (dist[from][to]==-) {printf("0\n");continue; }
memset(graph,,sizeof(graph));
for (int i= ;i<n ;i++)
{
for (int j= ;j<n ;j++)
{
if (i!=j && dist[from][to]!=- && dist[from][i]!=- && dist[j][to]!=- && an[i][j]!=- &&
dist[from][to]==dist[from][i]+an[i][j]+dist[j][to])
graph[i][j]=;
}
}
printf("%d\n",dinic());
}
return ;
}

zoj 2760 How Many Shortest Path 最大流的更多相关文章

  1. ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]

    人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...

  2. ZOJ 2760 How Many Shortest Path(最短路径+最大流)

    Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...

  3. ZOJ 2760 How Many Shortest Path(Dijistra + ISAP 最大流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给定一个带权有向图 G=(V, E)和源点 s.汇点 t ...

  4. zoj 2760 How Many Shortest Path【最大流】

    不重叠最短路计数. 先弗洛伊德求一遍两两距离(其实spfa或者迪杰斯特拉会更快但是没必要懒得写),然后设dis为st最短距离,把满足a[s][u]+b[u][v]+a[v][t]==dis的边(u,v ...

  5. ZOJ 2760 How Many Shortest Path (不相交的最短路径个数)

    [题意]给定一个N(N<=100)个节点的有向图,求不相交的最短路径个数(两条路径没有公共边). [思路]先用Floyd求出最短路,把最短路上的边加到网络流中,这样就保证了从s->t的一个 ...

  6. ZOJ 2760 How Many Shortest Path

    题目大意:给定一个带权有向图G=(V, E)和源点s.汇点t,问s-t边不相交最短路最多有几条.(1 <= N <= 100) 题解:从源点汇点各跑一次Dij,然后对于每一条边(u,v)如 ...

  7. zoj How Many Shortest Path

    How Many Shortest Path 题目: 给出一张图,求解最短路有几条.处理特别BT.还有就是要特别处理map[i][i] = 0,数据有不等于0的情况! 竟然脑残到了些错floyd! ! ...

  8. zoj 2760(网络流+floyed)

    How Many Shortest Path Time Limit: 10 Seconds      Memory Limit: 32768 KB Given a weighted directed ...

  9. hdu-----(2807)The Shortest Path(矩阵+Floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. Run JavaScript on your PeopleSoft pages conditionally

    Here, PeopleCode sets the logic that determines when the JavaScript code will run. This is not as si ...

  2. SQL SERVER 2008 R2 还原数据库3154错误

    1.SQL SERVER 2008 在还原数据库时,会报错. 提示错误:"备份集中的数据库备份与现有的 '***' 数据库不同.RESTORE DATABASE 正在异常终止. (Micro ...

  3. mysql 5.7压缩包安装笔记

    转载请注明出处http://www.cnblogs.com/havedream/p/5075263.html 重装系统之后准备安装mysql,看到官网上有mysql 5.7.10可以下载就点了,然后就 ...

  4. SQL Server编程(05)游标

    在关系数据库中,我们对于查询的思考是面向集合的.而游标打破了这一规则,游标使得我们思考方式变为逐行进行.对于类C的开发人员来着,这样的思考方式会更加舒服. 正常面向集合的思维方式是: 而对于游标来说: ...

  5. 3)Java容器

    3)Java容器   Java的集合框架核心主要有三种:List.Set和Map.这里的 Collection.List.Set和Map都是接口(Interface). List lst = new ...

  6. DevExpress 表中数据导出

    gridView1.ExportToXlsx("SampleStock.xlsx"); if (true) { DevExpress.XtraEditors.XtraMessage ...

  7. Delphi 的运算符列表

    分类 运算符 操作 操作数 结果类型 范例 算术运算符 + 加 整数,实数 整数,实数 X + Y - 减 整数,实数 整数,实数 Result - 1 * 乘 整数,实数 整数,实数 P * Int ...

  8. C# 验证IP是否正确简易方法 源代码

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  9. STL之迭代器

    容器支持的迭代器类型  STL Container  Type of Iterators Supported   vector  random access iterators 元素严格有序(类似数组 ...

  10. python匿名函数(lambda)

    简单来说,编程中提到的 lambda 表达式,通常是在需要一个函数,但是又不想费神去命名一个函数的场合下使用,也就是指匿名函数 当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方 ...