Multivariance Linear Regression练习
%% 方法一:梯度下降法
x = load('E:\workstation\data\ex3x.dat');
y = load('E:\workstation\data\ex3y.dat'); x = [ones(size(x,1),1) x];
meanx = mean(x);%求均值
sigmax = std(x);%求标准偏差
x(:,2) = (x(:,2)-meanx(2))./sigmax(2);
x(:,3) = (x(:,3)-meanx(3))./sigmax(3); figure
itera_num = 100; %尝试的迭代次数
sample_num = size(x,1); %训练样本的次数
alpha = [0.01, 0.03, 0.1, 0.3, 1, 1.3];%因为差不多是选取每个3倍的学习率来测试,所以直接枚举出来
plotstyle = {'b', 'r', 'g', 'k', 'b--', 'r--'}; theta_grad_descent = zeros(size(x(1,:)));
for alpha_i = 1:length(alpha) %尝试看哪个学习速率最好
theta = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
for i = 1:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta-y)'*(x*theta-y);%Jtheta是个行向量
grad = (1/sample_num).*x'*(x*theta-y);
theta = theta - alpha(alpha_i).*grad;
end
plot(0:49, Jtheta(1:50),char(plotstyle(alpha_i)),'LineWidth', 2)%此处一定要通过char函数来转换
hold on if(1 == alpha(alpha_i)) %通过实验发现alpha为1时效果最好,则此时的迭代后的theta值为所求的值
theta_grad_descent = theta
end
end
legend('0.01','0.03','0.1','0.3','1','1.3');
xlabel('Number of iterations')
ylabel('Cost function') %下面是预测公式
price_grad_descend = theta_grad_descent'*[1 (1650-meanx(2))/sigmax(2) (3-meanx(3)/sigmax(3))]' %%方法二:normal equations
x = load('E:\workstation\data\ex3x.dat');
y = load('E:\workstation\data\ex3y.dat');
x = [ones(size(x,1),1) x]; theta_norequ = inv((x'*x))*x'*y
price_norequ = theta_norequ'*[1 1650 3]'
%% 方法一:梯度下降法
x = load('E:\workstation\data\ex3x.dat');
y = load('E:\workstation\data\ex3y.dat'); x = [ones(size(x,),) x];
meanx = mean(x);%求均值
sigmax = std(x);%求标准偏差
x(:,) = (x(:,)-meanx())./sigmax();
x(:,) = (x(:,)-meanx())./sigmax(); figure
itera_num = ; %尝试的迭代次数
sample_num = size(x,); %训练样本的次数
alpha = [0.01, 0.03, 0.1, 0.3, , 1.3];%因为差不多是选取每个3倍的学习率来测试,所以直接枚举出来
plotstyle = {'b', 'r', 'g', 'k', 'b--', 'r--'}; theta_grad_descent = zeros(size(x(,:)));
for alpha_i = :length(alpha) %尝试看哪个学习速率最好
theta = zeros(size(x,),); %theta的初始值赋值为0
Jtheta = zeros(itera_num, );
for i = :itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (/(*sample_num)).*(x*theta-y)'*(x*theta-y);%Jtheta是个行向量
grad = (/sample_num).*x'*(x*theta-y);
theta = theta - alpha(alpha_i).*grad;
end
plot(:, Jtheta(:),char(plotstyle(alpha_i)),'LineWidth', )%此处一定要通过char函数来转换
hold on if( == alpha(alpha_i)) %通过实验发现alpha为1时效果最好,则此时的迭代后的theta值为所求的值
theta_grad_descent = theta
end
end
legend('0.01','0.03','0.1','0.3','','1.3');
xlabel('Number of iterations')
ylabel('Cost function') %下面是预测公式
price_grad_descend = theta_grad_descent'*[1 (1650-meanx(2))/sigmax(2) (3-meanx(3)/sigmax(3))]' %%方法二:normal equations
x = load('E:\workstation\data\ex3x.dat');
y = load('E:\workstation\data\ex3y.dat');
x = [ones(size(x,),) x]; theta_norequ = inv((x'*x))*x'*y
price_norequ = theta_norequ'*[1 1650 3]'
Multivariance Linear Regression练习
本文要解决的问题是给出了47个训练样本,训练样本的y值为房子的价格,x属性有2个,一个是房子的大小,另一个是房子卧室的个数。需要通过这些训练数据来学习系统的函数,从而预测房子大小为1650,且卧室有3个的房子的价格。
实验基础:
dot(A,B):表示的是向量A和向量B的内积。
又线性回归的理论可以知道系统的损失函数如下所示:
其向量表达形式如下:
当使用梯度下降法进行参数的求解时,参数的更新公式如下:
当然它也有自己的向量形式(程序中可以体现)。
两种方法比较预测值:
l :梯度下降法:
1训练数据:
x = load('E:\workstation\data\ex3x.dat');
y = load('E:\workstation\data\ex3y.dat');
x = [ones(size(x,1),1) x];
meanx = mean(x) 均值
sigmax = std(x) 标准差
x(:,2) = (x(:,2)-meanx(2))./sigmax(2);
x(:,3) = (x(:,3)-meanx(3))./sigmax(3);
2:Gradient descen梯度迭代
重点选择合适的下降下降梯度;
it's time to select a learning rate The goal of this part is to pick a good learning rate in the range of
You will do this by making an initial selection, running gradient descent and observing the cost function, and adjusting the learning rate accordingly. Recall that the cost function is defined as
The cost function can also be written in the following vectorized form,
where
画图;展示每个学习速率对应的下降图像选取最佳的下降图像
预测值为;
price_grad_descend = theta_grad_descent'*[1 (1650-meanx(2))/sigmax(2) (3-meanx(3)/sigmax(3))]'
l 方法二 普通方法直接
x = load('E:\workstation\data\ex3x.dat');
y = load('E:\workstation\data\ex3y.dat');
x = [ones(size(x,1),1) x];
theta_norequ = inv((x'*x))*x'*y
price_norequ = theta_norequ'*[1 1650 3]'
Multivariance Linear Regression练习的更多相关文章
- 转载 Deep learning:三(Multivariance Linear Regression练习)
前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage. ...
- [UFLDL] Linear Regression & Classification
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:六(regulariz ...
- 线性回归、梯度下降(Linear Regression、Gradient Descent)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...
- 局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)
欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多 ...
- Kernel Methods (3) Kernel Linear Regression
Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x ...
- Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...
- Linear regression with one variable算法实例讲解(绘制图像,cost_Function ,Gradient Desent, 拟合曲线, 轮廓图绘制)_矩阵操作
%测试数据 'ex1data1.txt', 第一列为 population of City in 10,000s, 第二列为 Profit in $10,000s 1 6.1101,17.592 5. ...
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
随机推荐
- java面向对象的语言
对象:真实存在唯一的事物. 类: 实际就是对某种类型事物的共性属性与行为的抽取. 抽象的概念.... 车 我们从小的时候就不断的接触很多的对象,我们的大脑就会把 这些具备相同属性与行为的事物进行分类. ...
- ~/.config/user-dirs.dirs【桌面设置】
# This file is written by xdg-user-dirs-update # If you want to change or add directories, just edit ...
- centos6.5安装node.js
一次偶然的机会知道有nodejs这个东西,确实对它还是很感兴趣的.刚开始只知道它能让javascript写后台,然后前后台都由javascript来写,确实觉得真的挺爽,毕竟人总是喜欢在自己熟悉领域做 ...
- js递归方法创建节点
var jsonData = [{,,"subnetRemark":"状态自带","subnetName":"中心网络" ...
- 关于c#调用java中间件api的几个问题
由于项目需要,做的c#客户端数据库连接串首先肯定不能写死的程序里(数据库很容易被攻击,我们的项目半年改了几次密码...) 放置在配置文件内,都可以看得到,最开始想法将配置文件加密,老师说加密过的文件还 ...
- Thinkphp 3.2.2 利用phpexcel完成excel导出功能
首先百度搜索phpexcel 包,放到项目的这个目录下 接下来 是controller里的导出代码 /**导出预定产品用户信息 * 大白驴 675835721 *2016-12-12 **/pub ...
- Sample a balance dataset from imbalance dataset and save it(从不平衡数据中抽取平衡数据,并保存)
有时我们在实际分类数据挖掘中经常会遇到,类别样本很不均衡,直接使用这种不均衡数据会影响一些模型的分类效果,如logistic regression,SVM等,一种解决办法就是对数据进行均衡采样,这里就 ...
- windows下安装MongoDB要注意的问题
1. errno:10061 由于目标计算机积极拒绝,无法连接. 解决方法:在mongoDB的bin目录下,打开命令行,输入: mongod --dbpath "c:\data\db&qu ...
- 二:基础概述netty
如果不了解netty的,可以百度下,netty社区现在也比较活跃. 现在所谓的大数据,flume,storm等底层都是netty. netty的性能模型: io模型---->异步非阻塞io ...
- java向Excel文件写入数据
/*使用之前要记得导入第三的jar包这个是我之前使用的时候那别人的东西自己修改了一下 还没来得及好好地封装一下还望见谅,注释我感觉写的挺清楚的就在不进行解释代码了*/package com.zzp.E ...