Runtime Complexity of .NET Generic Collection
Runtime Complexity of .NET Generic Collection
I had to implement some data structures for my computational geometry class. Deciding whether to implement the data structures myself or using the build-in classes turned out to be a hard decision, as the runtime complexity information is located at the method itself, if present at all. So I went ahead to consolidate all the information in one table, then looked at the source code in Reflector and verified them. Below is my result.
Internal Implement- ation |
Add/insert | Add beyond capacity | Queue/Push | Dequeue/ Pop/Peek |
Remove/ RemoveAt |
Item[i]/Find(i) | GetEnumerator | MoveNext | |
List | Array | O(1) to add, O(n) to insert | O(n) | - | - | O(n) | O(1) | O(1) | O(1) |
LinkedList | Doubly linked list | O(1), before/after given node | O(1) | O(1) | O(1) | O(1), before/after given node | O(n) | O(1) | O(1) |
Stack | Array | O(1) | O(n) | O(1) | O(1) | - | - | O(1) | O(1) |
Queue | Array | O(1) | O(n) | O(1) | O(1) | - | - | O(1) | O(1) |
Dictionary | Hashtable with links to another array index for collision | O(1), O(n) if collision | O(n) | - | - | O(1), O(n) if collision | O(1), O(n) if collision | O(1) | O(1) |
HashSet | Hashtable with links to another array index for collision | O(1), O(n) if collision | O(n) | - | - | O(1), O(n) if collision | O(1), O(n) if collision | O(1) | O(1) |
SortedDictionary | Red-black tree | O(log n) | O(log n) | - | - | O(log n) | O(log n) | O(log n) | O(1) |
SortedList | Array | O(n) | O(n) | - | - | O(n) | O(1) | O(1) | O(1) |
SortedSet | Red-black tree | O(log n) | O(log n) | - | - | O(log n) | O(log n) | O(log n) | O(1) |
Note:
Dictionary | Add, remove and item[i] has expected O(1) running time |
HashSet | Add, remove and item[i] has expected O(1) running time |
Runtime Complexity of .NET Generic Collection的更多相关文章
- The C5 Generic Collection Library for C# and CLI
The C5 Generic Collection Library for C# and CLI https://github.com/sestoft/C5/ The C5 Generic Colle ...
- Your algorithm's runtime complexity must be in the order of O(log n).
Given a sorted array of integers, find the starting and ending position of a given target value. You ...
- C# Collection
数组与集合不同的适用范围: 数组:数组最适用于创建和使用固定数量的强类型化对象. 集合:集合提供更灵活的方式来使用对象组. 与数组不同,你使用的对象组随着应用程序更改的需要动态地放大和缩小. 对于某些 ...
- Instant Complexity - POJ1472
Instant Complexity Time Limit: 1000MS Memory Limit: 10000K Description Analyzing the run-time comple ...
- 三部曲二(基本算法、动态规划、搜索)-1004-Instant Complexity
Instant Complexity Time Limit : 2000/1000ms (Java/Other) Memory Limit : 20000/10000K (Java/Other) ...
- [转]Dynamics AX and Generic collections of .Net
转自:http://blogs.msdn.com/b/emeadaxsupport/archive/2009/04/23/dynamics-ax-and-generic-collections-of- ...
- Instant Complexity(模拟,递归)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1535 Accepted: 529 Description Analyz ...
- Find that single one.(linear runtime complexity0
public class Solution { public int singleNumber(int[] nums) { int temp = 0; for (int i=0;i<nums.l ...
- Generic Interfaces (C# Programming Guide)
https://msdn.microsoft.com/en-us/library/kwtft8ak(v=vs.140).aspx It is often useful to define interf ...
随机推荐
- GOLDENGATE 配置文档,各类参数--转发
1 GoldenGate简要说明 GoldenGate现在是业内成熟的数据容灾与复制产品,经过多年的发展与完善,现在已经成为业内事实上的标准之一. GoldenGate软件是一种基于日志的 ...
- Get Script Path in Shell
#!/usr/bin/bashdir_old=$(pwd)absolute_script_path=$(cd $(dirname $0) && pwd)relative_script_ ...
- 计划任务,机器码与注册码,Web服务
01.计划任务的客户端配置 TScheduleTask 辅助结构内容: TScheduleRecord<ScheduleTask.pas> TScheduleRecord.Schedule ...
- 【DIY】【外壳】木板 & 亚克力 加工
—————————————————————————————————————————————————————————————————————— 一.途径 淘宝 https://item.taobao.c ...
- 显示图片的(自定义)吐司Toast
一般我们提示的时候都是直接提示文字的,其实Toast也可以显示图片 常用方法 Toast.makeText(context,text,duration)这返回一个Toast对象 toast.setDu ...
- ubuntu14.04 wifi驱动
ubuntu崩溃后再安装后,发现没有了wifi按钮 因为必须要用wifi不然太不方便了,于是在网上找了一下,安装了一下驱动就解决了 首先确定无线网卡类型: $ lspci -vnn -d 14e4: ...
- 394. Decode String
[题目] Total Accepted: 10087 Total Submissions: 25510 Difficulty: Medium Contributors: Admin Given an ...
- [开发笔记]-未找到与约束ContractName Microsoft.VisualStudio.Text.ITextDocumentFactoryService...匹配的导出【转载自:酷小孩】
原文地址:http://www.cnblogs.com/babycool/p/3199158.html 今天打算用VisualStudio2012做一个js效果页面测试的时候,打开VS2012新建项目 ...
- UVA 11297 线段树套线段树(二维线段树)
题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的 ...
- mysql的卸载方法
sudo rm /var/lib/mysql/ -R 删除mysql的数据文件 2 sudo rm /etc/mysql/ -R 删除mqsql的配置文件 3 sudo apt-get autorem ...