题意描述

方程的解数

求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数。

算法分析

远古 NOI 的题目就是水

类似于这道题

做过这道题就没什么思维难度了,思路都是一样的,就是双向搜索。

但是这道题好像卡常比较严重,我是特判掉第一个点过的。(然后蜜汁洛谷 rank 1)

代码实现

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 10
#define MOD 1999991
#define M 6000010
using namespace std;
typedef long long ll; int n,m,k[N],p[N];
int cnt=0,head[M];
struct Edge{
int nxt;
ll to;
}ed[M<<1];
ll ans=0; int read(){
int x=0,f=1;char c=getchar();
while(c<'0' || c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0' && c<='9') x=x*10+c-48,c=getchar();
return x*f;
} ll Abs(ll x){return x>0?x:-x;} int Hash(ll x){return Abs(x)%MOD;} ll Pow(int a,int b){
ll num=1;
while(b){
if(b&1) num*=a;
a*=a;
b>>=1;
}
return num;
} void insert(ll x){
int now=Hash(x);
ed[++cnt]=(Edge){head[now],x};
head[now]=cnt;
return;
} int search(ll x){
int u=Hash(x),tot=0;
for(int i=head[u];i;i=ed[i].nxt)
if(x==ed[i].to) ++tot;
return tot;
} void dfs1(int dep,ll sum){
if(dep>(n>>1)){
insert(sum);
return;
}
for(int i=1;i<=m;i++)
dfs1(dep+1,sum+k[dep]*Pow(i,p[dep]));
return;
} void dfs2(int dep,ll sum){
if(dep>n){
ans+=search(-sum);
return;
}
for(int i=1;i<=m;i++)
dfs2(dep+1,sum+k[dep]*Pow(i,p[dep]));
return;
} int main(){
n=read(),m=read();
for(int i=1;i<=n;i++)
k[i]=read(),p[i]=read();
dfs1(1,0);dfs2((n>>1)+1,0);
printf("%lld\n",ans);
return 0;
}

完结撒❀。

P5691 [NOI2001]方程的解数的更多相关文章

  1. cogs 304. [NOI2001] 方程的解数(meet in the middle)

    304. [NOI2001] 方程的解数 ★★☆   输入文件:equation1.in   输出文件:equation1.out   简单对比时间限制:3 s   内存限制:64 MB 问题描述 已 ...

  2. NOI2001 方程的解数

    1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛  时间限制: 5 s  空间限制: 64000 KB     题目描述 Descripti ...

  3. NOI2001 方程的解数(双向搜索)

    solution 一道非常经典的双向搜索题目,先将前3个未知数枚举一遍得到方程的前半部分所有可能的值,取负存入第一个队列中再将后3个未知数枚举一遍,存入第二个队列中.这样我们只要匹配两个队列中相同的元 ...

  4. POJ 1186 方程的解数

    方程的解数 Time Limit: 15000MS   Memory Limit: 128000K Total Submissions: 6188   Accepted: 2127 Case Time ...

  5. 计蒜客 方程的解数 dfs

    题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...

  6. [ NOI 2001 ] 方程的解数

    \(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...

  7. 【NOI2001】方程的解数 题解(dfs+哈希)

    题目描述 已知一个方程 k1*x1^p1+k2*x2^p2……+kn*xn^pn=0. 求解的个数.其中1<=x<=150,1<=p<=6; 答案在int范围内 输入格式 第一 ...

  8. 【poj1186】 方程的解数

    http://poj.org/problem?id=1186 (题目链接) 题意 已知一个n元高次方程:   其中:x1, x2,…,xn是未知数,k1,k2,…,kn是系数,p1,p2,…pn是指数 ...

  9. [Swust OJ 166]--方程的解数(hash法)

    题目链接:http://acm.swust.edu.cn/problem/0166/ Time limit(ms): 5000 Memory limit(kb): 65535   有如下方程组: A1 ...

随机推荐

  1. 再解决不了前端加密我就吃shi

    参考文章 快速定位前端加密方法 渗透测试-前端加密测试 前言 最近学习挖洞以来,碰到数据做了加密基本上也就放弃了.但是发现越来越多的网站都开始做前端加密了,不论是金融行业还是其他.所以趁此机会来捣鼓一 ...

  2. Python练习题 011:成绩打分

    [Python练习题 011] 利用条件运算符的嵌套来完成此题:学习成绩>=90分的同学用A表示,60-89分之间的用B表示,60分以下的用C表示. ---------------------- ...

  3. kubernetes1.15极速部署prometheus和grafana

    关于prometheus和grafana prometheus负责监控数据采集,grafana负责展示,下图来自官网: 环境信息 硬件:三台CentOS 7.7服务器 kubernetes:1.15 ...

  4. html 网页美化--2

    html网页美化: 鼠标点击特效:爱心.爆炸烟花(有些特效在Chrome中无法实现,推荐使用edge) 背景樱花花瓣 鼠标滑动彩带 此代码也可以用于博客园主页美化(需要申请JS权限):复制到博客侧边栏 ...

  5. TCHAR数据类型介绍

    转载:https://blog.csdn.net/mousebaby808/article/details/5259944 并不是所有的Windows操作系统都支持UNICODE编码的API(例如早期 ...

  6. Python下的图像处理库,你选哪个?

    奥里给~ 转载:https://blog.csdn.net/chen801090/article/details/105795068/ 在进行数字图像处理时,我们经常需要对图像进行读取.保存.缩放.裁 ...

  7. k8s的namespace一直Terminating的完美解决方案

    k8s的namespace一直Terminating的完美解决方案 在k8s集群中进行测试删除namespace是经常的事件,而为了方便操作,一般都是直接对整个名称空间进行删除操作. 相信道友们在进行 ...

  8. Java中的对象都是在堆上分配的吗?

    作者:LittleMagic https://www.jianshu.com/p/8377e09971b8 为了防止歧义,可以换个说法: Java对象实例和数组元素都是在堆上分配内存的吗? 答:不一定 ...

  9. TP5隐藏入口文件

    1,进入根目录,打开public文件夹,里面有个.htaccess文件 2,将这段代码改成?s= 3,不修改该文件,想要隐藏入口文件则会报错 4,改了文件之后是 5,改了入口文件为了隐藏  .php

  10. 手把手教你AspNetCore WebApi:Nginx(负载均衡)

    前言 这几天小明又有烦恼了,系统上线一段时间后,系统性能出现了问题,缓存等都用上了,还是不能解决问题.马老板很大气,又买了3台服务器,让小明做个集群分流一下. 集群是什么? 是一种计算机系统,它通过一 ...