反向传播(Back Propagation)

通常在设计好一个神经网络后,参数的数量可能会达到百万级别。而我们利用梯度下降去跟新参数的过程如(1)。但是在计算百万级别的参数时,需要一种有效计算梯度的方法,这种方法就是反向传播(简称BP), 因此BP并不是一种新的算法,使用BP就是能够使计算梯度时更加有效率。

其中θ为神经网络的参数,为梯度。

链式法则

设有两个函数为y=g(x),z=h(y),那么要计算z对x导数,则计算过程如(2)

设有三个函数为x=g(s),y=h(s),z=k(x,y),那么要计算z对x导数,则计算过程如(3)

BP计算过程

假定我们设计的神经网络结构如图1-1所示,其中yj神经网络为输出值,dh为隐藏层神经元的输出值,xi为输入值,bj、mh分别是隐藏层和输出层神经元的偏置;

图1-1 神经网络结构

设神经网络的损失函数为L(θ)(L(θ)具体的结构根据实际情况来确定,θ表示所有参数);wjh的更新形式为

由于wjh是通过影响,继而影响yj,最终影响L(θ)。因此wjh的更新计算可以通过(2)的链式法则进行展开。

其中,需要在确定激活函数和损失函数的具体结果后才就可以进行微分。而则可以在神经网络前向传播的过程中就可以计算,因此这一项的计算是自下向上,因此也称作forward pass

类比于wjh的更新情况,bj的更新计算为

再计算vhi的的更新情况,跟wjh的更新情况没有太大差别。vhi通过影响输入,继而影响dh,dh通过影响所有的输出层神经元的输入,继而影响输出值Y={y1,y2,...yl},最终影响L(θ),因此需要运用(3)进行链式法则展开

其中(8)中的跟计算的部分项相同。因此,要计算下层参数的微积分,就需要计算上层参数的微积分。整个参数的更新计算自上向下,这个计算过程也称作backward pass

参考资料

[1]机器学习-李宏毅

[2]《机器学习》-周志华

反向传播(Back Propagation)的更多相关文章

  1. 神经网络中误差反向传播(back propagation)算法的工作原理

    注意:版权所有,转载需注明出处. 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂. 在开始推导之前,需要先做一些准备工作,推 ...

  2. 前馈神经网络-反向传播(Back Propagation)公式推导走读

        构造:输入神经元个数等于输入向量维度,输出神经元个数等于输出向量维度.(x1=(1,2,3),则需要三个输入神经元)   一 前向后传播   隐层:

  3. 前向传播算法(Forward propagation)与反向传播算法(Back propagation)

    虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与 ...

  4. 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧

    由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...

  5. Deep Learning 学习笔记(7):神经网络的求解 与 反向传播算法(Back Propagation)

    反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解. 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能 ...

  6. BP(back propagation)反向传播

    转自:http://www.zhihu.com/question/27239198/answer/89853077 机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定 ...

  7. 再谈反向传播(Back Propagation)

    此前写过一篇<BP算法基本原理推导----<机器学习>笔记>,但是感觉满纸公式,而且没有讲到BP算法的精妙之处,所以找了一些资料,加上自己的理解,再来谈一下BP.如有什么疏漏或 ...

  8. Backpropagation反向传播算法(BP算法)

    1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...

  9. 深度神经网络(DNN)反向传播算法(BP)

    在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...

随机推荐

  1. mysql存储过程定义者

    1. 执行update mysql.proc set DEFINER='root@%' WHERE NAME='p_update_rim_batch_log' AND db='otherdataonl ...

  2. spring乱码处理

    在web.xml添加post乱码filter:CharacterEncodingFilter 2). 对于get请求中文参数出现乱码解决方法有两个: a. 修改tomcat配置文件添加编码与工程编码一 ...

  3. JAVA并发包——锁

    1.java多线程中,可以使用synchronized关键字来实现线程间的同步互斥工作,其实还有个更优秀的机制来完成这个同步互斥的工作--Lock对象,主要有2种锁:重入锁和读写锁,它们比synchr ...

  4. mysql5.7.20压缩版安装

    1.官网下载.zip格式的MySQL Server的压缩包,选择x86或x64版,并解压. 2. 创建 data文件夹 及 my.ini文件,并编辑 [mysqld] # 设置为自己MYSQL的安装目 ...

  5. Netty tcnative boringssl windows 32-bit 编译

    1 问题 在使用Netty SSL时,我们往往会采用netty-tcnative-boringssl组件.但是netty-tcnative-boringssl在Windows上仅有64位版本的,没有3 ...

  6. [leetcode] 周赛 223

    比赛题目:https://leetcode-cn.com/contest/weekly-contest-223/. 解码异或后的数组 题目:1720. 解码异或后的数组. 还记得数列求和的「累加法」? ...

  7. 【剑指 Offer】09.用两个栈实现队列

    题目描述 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead , 分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,del ...

  8. 【Sphinx】 为Python自动生成文档

    sphinx 前言 Sphinx是一个可以用于Python的自动文档生成工具,可以自动的把docstring转换为文档,并支持多种输出格式包括html,latex,pdf等 开始 建一个存放文档的do ...

  9. 基于Docker搭建Hadoop+Hive

    为配合生产hadoop使用,在本地搭建测试环境,使用docker环境实现(主要是省事~),拉取阿里云已有hadoop镜像基础上,安装hive组件,参考下面两个专栏文章: 克里斯:基于 Docker 构 ...

  10. sa-token 之权限验证

    权限验证 核心思想 所谓权限验证,验证的核心就是当前账号是否拥有一个权限码 有:就让你通过.没有:那么禁止访问 再往底了说,就是每个账号都会拥有一个权限码集合,我来验证这个集合中是否包括我需要检测的那 ...