反向传播(Back Propagation)
反向传播(Back Propagation)
通常在设计好一个神经网络后,参数的数量可能会达到百万级别。而我们利用梯度下降去跟新参数的过程如(1)。但是在计算百万级别的参数时,需要一种有效计算梯度的方法,这种方法就是反向传播(简称BP), 因此BP并不是一种新的算法,使用BP就是能够使计算梯度时更加有效率。
其中θ为神经网络的参数,为梯度。
链式法则
设有两个函数为y=g(x),z=h(y),那么要计算z对x导数,则计算过程如(2)
设有三个函数为x=g(s),y=h(s),z=k(x,y),那么要计算z对x导数,则计算过程如(3)
BP计算过程
假定我们设计的神经网络结构如图1-1所示,其中yj神经网络为输出值,dh为隐藏层神经元的输出值,xi为输入值,bj、mh分别是隐藏层和输出层神经元的偏置;
图1-1 神经网络结构
设神经网络的损失函数为L(θ)(L(θ)具体的结构根据实际情况来确定,θ表示所有参数);wjh的更新形式为
由于wjh是通过影响,继而影响yj,最终影响L(θ)。因此wjh的更新计算可以通过(2)的链式法则进行展开。
其中,需要在确定激活函数和损失函数的具体结果后才就可以进行微分。而
则可以在神经网络前向传播的过程中就可以计算,因此这一项的计算是自下向上,因此也称作forward pass。
类比于wjh的更新情况,bj的更新计算为
再计算vhi的的更新情况,跟wjh的更新情况没有太大差别。vhi通过影响输入,继而影响dh,dh通过影响所有的输出层神经元的输入
,继而影响输出值Y={y1,y2,...yl},最终影响L(θ),因此需要运用(3)进行链式法则展开
其中(8)中的跟计算
的部分项相同。因此,要计算下层参数的微积分,就需要计算上层参数的微积分。整个参数的更新计算自上向下,这个计算过程也称作backward pass。
参考资料
[2]《机器学习》-周志华
反向传播(Back Propagation)的更多相关文章
- 神经网络中误差反向传播(back propagation)算法的工作原理
注意:版权所有,转载需注明出处. 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂. 在开始推导之前,需要先做一些准备工作,推 ...
- 前馈神经网络-反向传播(Back Propagation)公式推导走读
构造:输入神经元个数等于输入向量维度,输出神经元个数等于输出向量维度.(x1=(1,2,3),则需要三个输入神经元) 一 前向后传播 隐层:
- 前向传播算法(Forward propagation)与反向传播算法(Back propagation)
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与 ...
- 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...
- Deep Learning 学习笔记(7):神经网络的求解 与 反向传播算法(Back Propagation)
反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解. 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能 ...
- BP(back propagation)反向传播
转自:http://www.zhihu.com/question/27239198/answer/89853077 机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定 ...
- 再谈反向传播(Back Propagation)
此前写过一篇<BP算法基本原理推导----<机器学习>笔记>,但是感觉满纸公式,而且没有讲到BP算法的精妙之处,所以找了一些资料,加上自己的理解,再来谈一下BP.如有什么疏漏或 ...
- Backpropagation反向传播算法(BP算法)
1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...
- 深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
随机推荐
- 高效扩展工具让 VS Code 如虎添翼
Codelf 变量命名神器 Star:10688 https://github.com/unbug/codelf 新建项目,变量,类,方法,接口都需要命名,一个好的命名可以一眼看出这个地方的功能,Co ...
- Pytest测试框架(二):pytest 的setup/teardown方法
PyTest支持xUnit style 结构, setup() 和 teardown() 方法用于初始化和清理测试环境,可以保证测试用例的独立性.pytest的setup/teardown方法包括:模 ...
- 使用jmeter进行压力测试与nginx连接数优化
案例训练目标 学会使用jmeter工具 学会配置nginx连接数优化 包含技能点 使用jmeter做压力测试 配置nginx的并发连接数 环境要求 PC支持VT,4G内存以上:vmware虚拟机安装有 ...
- 自定义ClassLoader的使用
1 import java.io.ByteArrayOutputStream; 2 import java.io.File; 3 import java.io.FileInputStream; 4 i ...
- ElasticSearch--一、使用场景以及对应软件配置安装
废话不多说,直接来硬的!我在使用的时候使用的是mysql数据库. 一.ElasticSearch概念和使用场景 1.当我们需要搜索海量数据的时候,就可能会用到.以下使用的场景有哪些呢? 搜索海量数据 ...
- AtCoder Beginner Contest 188 F - +1-1x2 思维题
题目描述 给你两个数 \(x\),\(y\) 可以对 \(x\) 进行 \(+1,-1\) 或 \(\times 2\) 的操作 问最少操作多少次后变为 \(y\) \(x,y \leq 10^{18 ...
- PHP 清除缓存文件
/*清除缓存文件*/ public function clearRuntime() { $this->delFileByDir(RUNTIME_PATH); $this->success( ...
- 【C++】《Effective C++》第五章
第五章 实现 条款26:尽可能延后变量定义式的出现时间 只要定义了一个变量而其类型带有一个构造函数或析构函数,那么 当程序的控制流到达这个变量定义式时,你得承受这个构造成本. 当这个变量离开这个作用域 ...
- 搭建docker环境,安装常用应用(单机)
## 安装docker ```bash1.卸载系统之前dockersudo yum remove docker \ docker-client \ docker-client-latest \ doc ...
- python学习笔记 | macOS Big Sur动态壁纸食用指南
目录 前言 爬虫篇 壁纸使用篇 后记 前言 北京时间23日凌晨1点,苹果WWDC2020大会开幕.在发布会上,苹果正式发布了新版macOS,并将其命名为"Big Sur". 相比于 ...