luoguP4999 烦人的数学作业
写在前面
这两天信息量有点大,需要好好消化一下,呼呼
\(f[i][j]\) 的转移式还是好理解的,但是对于其实际意义课上有点糊
求 \(ans_{1, x}\) 是感觉手动把数拆开看会好理解一点??
同级某巨佬wxf会用记忆化搜索做,我不会,太菜了
luoguP4999 烦人的数学作业
简述题意:
给定区间 \([ L , R ]\) ,求 \(L\) 到 \(R\) 区间内每个数字和 $ (1 \le L \le R \le 10^{18}) $ ,共 \(T\) 组数据 \((1 \le T \le 20)\)
Solution:
数位DP入门题?
设 \(f[i][j]\) ,第一维表示枚举到第 \(i\) 位, 第二维表示以 \(j\) 为最高位, \(f\) 数组用来存数字和
如 \(f[i][j]\) 中存的是 \([j000\cdots \ , \ j999\cdots]\) 这一区间的数字和,(其中每个数都有 \(i\) 位)
初始状态: \(f[1][i] = i \ (0 \le i \le 9)\)
考虑怎么转移,新枚举到的 \(f[i][j]\) 是在 \(f[i -1][k]\) 基础上加上新的一位,而因为新的一位后面可以跟 \(0 - 9\) 所有数,所以 \(k\) 的取值是 \(0 - 9\) , 因为这样的数的数量是 \(10^{i - 1}\) 个,所以转移方程就推出来啦:
\]
考虑最后怎么合并答案 \(ans_{l, r}\) ,
可以考虑先求出 \(ans_{1, l}\) 和 \(ans_{1, r + 1}\) 的答案,最后在进行合并(至于为什么是 \(l\) 和 \(r + 1\) 后面会进行解释
手模一个样例看看: \(ans_{1, 114514}\)
发现可以将它拆开:
& 114514 = \{ 0 - 99999 \} + \{ 100000 - 109999\} \\
& + \{ 110000 - 110999 ,111000 - 111999 , 112000 - 112999 , 113000 - 113999 \} \\
&+ \cdots \\
\end{aligned}
\]
用 \(f[i][j]\) 数组一个一个代换即可,前面多出的数可以用 \(sum\) 存一下在循环最后处理
在每一层后面处理一下前面多出的数(感觉说不清楚,感性理解一下/kk
可以发现循环到最后一位时并不会加上最后一个数,所以将所求区间整理一下就好啦
LL solve(LL x){
LL ans = 0, sum = 0;
LL s[22], len = 0;
for(;x; x /= 10) s[++len] = x % 10;
for(int i = len; i >= 1; --i){
for(int j = 0; j < s[i]; ++j){
ans = (ans + f[i][j]) % mod;
}
ans = (ans + sum * s[i] * quick_pow(10, i - 1) % mod) % mod;
sum = (sum + s[i]) % mod;
}
return ans;
}
(一开始感觉这样写比 \(Aliemo\)写的简单,后来发现并没有什么本质的区别)
code:
/*
Work by: Suzt_ilymics
Knowledge: 数位DP
Time: luogu最优解第五?
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
using namespace std;
const int mod = 1e9+7;
LL read(){
LL s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9') s = (s << 1) + (s << 3) + ch - '0', ch = getchar();
return s * w;
}
LL T, l, r, ans = 0;
LL f[22][22];
LL quick_pow(LL x, LL p){//快速幂
LL res = 1;
for( ; p; p >>= 1){
if(p & 1) res = res * x;
x = x * x;
}
return res;
}
void init(){//初始化
for(int i = 1; i <= 9; ++i) f[1][i] = i;
for(int i = 2; i <= 19; ++i){
for(int j = 0; j <= 9; ++j){
for(int k = 0; k <= 9; ++k){
f[i][j] = (f[i][j] + f[i - 1][k]) % mod;
}
f[i][j] = (f[i][j] + j * quick_pow(10, i - 1)) % mod;
// cout<<f[i][j]<<" ";
}
// cout<<"\n";
}
}
LL solve(LL x){//求ans(1 - x)
LL ans = 0, sum = 0;
LL s[22], len = 0;
for(;x; x /= 10) s[++len] = x % 10;
for(int i = len; i >= 1; --i){
for(int j = 0; j < s[i]; ++j){
ans = (ans + f[i][j]) % mod;
}
ans = (ans + sum * s[i] * quick_pow(10, i - 1) % mod) % mod;
sum = (sum + s[i]) % mod;
}
return ans;
}
signed main()
{
init();
T = read();
while(T--){
l = read(), r = read();
printf("%lld\n", (solve(r + 1) - solve(l) + mod) % mod);
}
return 0;
}
/*
in:
2
1 1000000000000000000
1 1000000000000000000
out:
3970
3970
*/
luoguP4999 烦人的数学作业的更多相关文章
- P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业
P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...
- [洛谷P4999]烦人的数学作业
题目大意:定义$f(x)$表示$x$每一个数位(十进制)的数之和,求$\sum\limits_{i=l}^rf(i)$,多组询问. 题解:数位$DP$,可以求出每个数字的出现个数,再乘上每个数字的大小 ...
- 题解 P4999 【烦人的数学作业】
数位 dp. 设 \(dp_{q,i}\)(\(i\in\{0,1,2,3,4,5,6,7,8,9\}\))为 \(1\sim q\) 中 \(i\) 出现的次数,\(1\sim q\) 的数字和显然 ...
- 得物(毒)APP,8位抽奖码需求,这不就是产品给我留的数学作业!
作者:小傅哥 博客:https://bugstack.cn Github:https://github.com/fuzhengwei/CodeGuide/wiki 沉淀.分享.成长,让自己和他人都能有 ...
- BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...
- sdibt 1244 烦人的幻灯片
在这个OJ站还没号,暂时没提交,只是过了样例 真不愧是烦人的幻灯片,烦了我一小时 ---更新:OJ测试完毕,AC 烦人的幻灯片问题 Time Limit: 1 Sec Memory Limit: 6 ...
- bzoj2326: [HNOI2011]数学作业
矩阵快速幂,分1-9,10-99...看黄学长的代码理解...然而他直接把答案保存在最后一行(没有说明...好吧应该是我智障这都不知道... #include<cstdio> #inclu ...
- BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )
BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...
- iOS 界面 之 EALayout 无需反复编译,可视化实时界面,告别Storyboard AutoLayout Xib等等烦人的工具
http://blog.csdn.net/fatherhui iOS开发,EALayout 无需反复编译,可视化实时界面,告别Storyboard AutoLayout Xib等等烦人的工具 EALa ...
随机推荐
- 动态SQL基本语句用法
1.if语句 如果empno不为空,则在WHERE参数后加上AND empno = #{empno},这里有1=1所以即使empno为null,WHERE后面也不会报错. 映射文件 <selec ...
- python3使用configparser读取配置文件
python2中的ConfigParser在python3中改成了configparser 1.配置文件格式是 [域名] k=v 2.代码示例:需要生成conf.ini配置文件如下:[config]v ...
- 使用freetype来显示中文汉字和英文字符
这里我们用到了freetype.进入官网http://savannah.nongnu.org/download/freetype/ 中下载最新的版本2.7的源代码和文件.freetype-2.7.ta ...
- jQuery作业 点击显示
代码如下: 里: 导入jQuery包: 里:内容 水果 苹果 橘子 梨子 香蕉 化妆品 口红 眼影 腮红 高光 护肤品 水 乳 霜 精华
- web前台界面的两种验证方式
JSON的全称是"JavaScript Object Notation",意思是JavaScript对象表示法,它是一种基于文本,独立于语言的轻量级数据交换格式. 第一种: 用户体 ...
- 使用node+puppeteer+express搭建截图服务
使用node+puppeteer+express搭建截图服务 转载请注明出处https://www.cnblogs.com/funnyzpc/p/14222807.html 写在之前 一开始我们的需求 ...
- 痞子衡嵌入式:MCUXpresso IDE下添加新路径下源文件进工程编译的方法
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是MCUXpresso IDE下添加新路径下源文件进工程编译的方法. 接着上篇文章 <MCUXpresso IDE下SDK工程导入与 ...
- HTTP ERROR400的问题解决
今天写添加功能,在点添加提交时报了一个"HTTP ERROR 400"的错误,如图, 请求提交的代码死活跳转不到后台,郁闷中,开启debug功能,开始一步步排查, 1.先单独把跳转 ...
- Kubernetes K8S之通过helm部署metrics-server与HPA详解
Kubernetes K8S之通过helm部署metrics-server与 Horizontal Pod Autoscaling (HPA)详解 主机配置规划 服务器名称(hostname) 系统版 ...
- Solon rpc 之 SocketD 协议 - 消息鉴权模式
Solon rpc 之 SocketD 协议系列 Solon rpc 之 SocketD 协议 - 概述 Solon rpc 之 SocketD 协议 - 消息上报模式 Solon rpc 之 Soc ...