High Performance MySQL, Third Edition
by Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko

http://dev.mysql.com/doc/refman/5.7/en/

https://zh.wikipedia.org/wiki/ISAM

https://en.wikipedia.org/wiki/ISAM

ISAM (an acronym for Indexed Sequential Access Method) is a method for indexing data for fast retrieval.

索引顺序存取方法(ISAM, Indexed Sequential Access Method)最初是IBM公司发展起来的一个文件系统,可以连续地(按照他们进入的顺序)或者任意地(根据索引)记录任何访问。每个索引定义了一次不同排列的记录。现在这个概念用在许多场合:

  • 特指IBM公司的ISAM产品
  • 数据库系统中提供用户接口从数据文件中检索数据。
  • 通常指,数据库的索引,这种索引被大多数数据库所采用,包括关系数据库或其它。

在ISAM系统,数据组织成有固定长度的记录,按顺序存储的。

In an ISAM system, data is organized into records which are composed of fixed length fields. Records are stored sequentially, originally to speed access on a tape system. A secondary set of hash tables known as indexes contain "pointers" into the tables, allowing individual records to be retrieved without having to search the entire data set. This is a departure from the contemporaneous navigational databases, in which the pointers to other data were stored inside the records themselves. The key improvement in ISAM is that the indexes are small and can be searched quickly, thereby allowing the database to access only the records it needs. Additionally modifications to the data do not require changes to other data, only the table and indexes in question.

When an ISAM file is created, index nodes are fixed, and their pointers do not change during inserts and deletes that occur later (only content of leaf nodes change afterwards). As a consequence of this, if inserts to some leaf node exceed the node's capacity, new records are stored in overflow chains. If there are many more inserts than deletions from a table, these overflow chains can gradually become very large, and this affects the time required for retrieval of a record.[4]

https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html

MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful extensions.

Table 16.2 MyISAM Storage Engine Features

Feature Support
B-tree indexes Yes
Backup/point-in-time recovery (Implemented in the server, rather than in the storage engine.) Yes
Cluster database support No
Clustered indexes No
Compressed data Yes (Compressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format with MyISAM are read only.)
Data caches No
Encrypted data Yes (Implemented in the server via encryption functions.)
Foreign key support No
Full-text search indexes Yes
Geospatial data type support Yes
Geospatial indexing support Yes
Hash indexes No
Index caches Yes
Locking granularity Table
MVCC No
Replication support (Implemented in the server, rather than in the storage engine.) Yes
Storage limits 256TB
T-tree indexes No
Transactions No
Update statistics for data dictionary Yes
 

Each MyISAM table is stored on disk in two files. The files have names that begin with the table name and have an extension to indicate the file type. The data file has an .MYD (MYData) extension. The index file has an .MYI(MYIndex) extension. The table definition is stored in the MySQL data dictionary.

https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html

Table 15.1 InnoDB Storage Engine Features

Feature Support
B-tree indexes Yes
Backup/point-in-time recovery (Implemented in the server, rather than in the storage engine.) Yes
Cluster database support No
Clustered indexes Yes
Compressed data Yes
Data caches Yes
Encrypted data Yes (Implemented in the server via encryption functions; In MySQL 5.7 and later, data-at-rest tablespace encryption is supported.)
Foreign key support Yes
Full-text search indexes Yes (InnoDB support for FULLTEXT indexes is available in MySQL 5.6 and later.)
Geospatial data type support Yes
Geospatial indexing support Yes (InnoDB support for geospatial indexing is available in MySQL 5.7 and later.)
Hash indexes No (InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.)
Index caches Yes
Locking granularity Row
MVCC Yes
Replication support (Implemented in the server, rather than in the storage engine.) Yes
Storage limits 64TB
T-tree indexes No
Transactions Yes
Update statistics for data dictionary Yes
 
 

mysql_High.Performance.MySQL.3rd.Edition.Mar.2012

A B-Tree index speeds up data access because the storage engine doesn’t have to scan
the whole table to find the desired data. Instead, it starts at the root node (not shown
in this figure). The slots in the root node hold pointers to child nodes, and the storage
engine follows these pointers. It finds the right pointer by looking at the values in the
node pages, which define the upper and lower bounds of the values in the child nodes.
Eventually, the storage engine either determines that the desired value doesn’t exist or
successfully reaches a leaf page.
 
 
 
https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html
Most MySQL indexes (PRIMARY KEYUNIQUEINDEX, and FULLTEXT) are stored in B-trees. Exceptions: Indexes on spatial data types use R-trees; MEMORY tables also support hash indexesInnoDB uses inverted lists for FULLTEXTindexes.
 
 
 
 

B-tree R-tree B+-tree indexes 索引顺序存取方法 ISAM MySQL实现拓展ISAM为MyISAM的更多相关文章

  1. ISAM Indexed Sequential Access Method 索引顺序存取方法

    ISAM Indexed Sequential Access Method 索引顺序存取方法 学习了:https://baike.baidu.com/item/ISAM/3013855 是IBM发展起 ...

  2. What is the difference between a binary tree, a binary search tree, a B tree and a B+ tree?

    Binary Tree : It is a tree data structure in which each node has at most two children. As such there ...

  3. [Algorithm] Check if a binary tree is binary search tree or not

    What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...

  4. B-Tree索引在sqlserver和mysql中的应用

    在谈论数据库性能优化的时候,通常都会提到“索引”,但很多人其实并没有真正理解索引,也没有搞清楚索引为什么就能加快检索速度,以至于在实践中并不能很好的应用索引.事实上,索引是一种廉价而且十分有效的优化手 ...

  5. MySQL索引的缺点以及MySQL索引在实际操作中有哪些事项

    以下的文章主要介绍的是MySQL索引的缺点以及MySQL索引在实际操作中有哪些事项是值得我们大家注意的,我们大家可能不知道过多的对索引进行使用将会造成滥用.因此MySQL索引也会有它的缺点: 虽然索引 ...

  6. 查找->静态查找表->分块查找(索引顺序表)

    文字描述 分块查找又称为索引顺序查找,是顺序查找的一种改进方法.在此查找算法中,除表本身外, 还需要建立一个”索引表”.索引表中包括两项内容:关键字项(其值为该字表内的最大关键字)和指针项(指示该子表 ...

  7. where条件顺序与建索引顺序

    查询时,如果数据量很大,where 后面的条件与建索引的顺序相同,也没有什么多少差别,聚集索引稍微快点; 但where 后面的条件与建索引顺序不同,速度会慢下来,到底慢多少,不同的机器会不一样,没有绝 ...

  8. MySQL索引 索引分类 最左前缀原则 覆盖索引 索引下推 联合索引顺序

    MySQL索引 索引分类 最左前缀原则 覆盖索引 索引下推 联合索引顺序   What's Index ? 索引就是帮助RDBMS高效获取数据的数据结构. 索引可以让我们避免一行一行进行全表扫描.它的 ...

  9. 五分钟,让你明白MySQL是怎么选择索引《死磕MySQL系列 六》

    系列文章 二.一生挚友redo log.binlog<死磕MySQL系列 二> 三.MySQL强人"锁"难<死磕MySQL系列 三> 四.S 锁与 X 锁的 ...

随机推荐

  1. 手把手教你搭饥荒专用服务器(三)—MOD及其他高级设置

    友情链接: 手把手教你搭饥荒专用服务器(一)-服务器准备工作 手把手教你搭饥荒专用服务器(二)-环境配置及基本使用 手把手教你搭饥荒专用服务器(三)-MOD及其他高级设置 手把手教你搭饥荒专用服务器( ...

  2. MD5,BASE64Encoder加密

    package com.cn.peitest; import java.io.UnsupportedEncodingException; import java.security.MessageDig ...

  3. [NOIP2013 提高组] 货车运输

    前言 使用算法:堆优化 \(prim\) , \(LCA\) . 题意 共有 \(n\) 个点,有 \(m\) 条边来连接这些点,每条边有权值.有 \(q\) 条类似于 \(u\) \(v\) 询问, ...

  4. Net Core(Net5) 部署到不同操作系统遇到问题的解决方法

    Net Core(Net5) 部署到不同操作系统的解决方法 目录 Net Core(Net5) 部署到不同操作系统的解决方法 1 系统版本升级补丁 1.1应用程序部署时VC无法安装,导致应用程序缺少配 ...

  5. 常用的linux指令

    a.cd /home 进入 '/ home' 目录' b.cd .. 返回上一级目录 c.cd ../.. 返回上两级目录 d.mkdir dir1 创建一个叫做 'dir1' 的目录' e.mkdi ...

  6. java内置锁实现锁住代码块方案(同一个对象或锁住整个类.class)

    我们看一个例子: class Demo { public synchronized void test() { System.out.println("test方法开始执行,当前线程为:&q ...

  7. 「译」使用 System.Net.Http.Json 高效处理Json

    在这篇文章,我将介绍一个名为 System.Net.Http.Json 的扩展库,它最近添加到了 .NET 中,我们看一下这个库能够给我们解决什么问题,今天会介绍下如何在代码中使用. 在此之前我们是如 ...

  8. MyArray框架搭建与实现

    #include<iostream> using namespace std; template<class T> class MyArray { public: //构造函数 ...

  9. ABP框架中短信发送处理,包括阿里云短信和普通短信商的短信发送集成

    在一般的系统中,往往也有短信模块的需求,如动态密码的登录,系统密码的找回,以及为了获取用户手机号码的短信确认等等,在ABP框架中,本身提供了对邮件.短信的基础支持,那么只需要根据自己的情况实现对应的接 ...

  10. 【Redis3.0.x】事务

    Redis3.0.x 事务 基本概念 multi,exec,discard,watch 是 Redis 事务的基础,它们允许一步执行一组命令,有两个重要保证: 事务中的所有命令都被序列化并顺序执行.在 ...