B-tree R-tree B+-tree indexes 索引顺序存取方法 ISAM MySQL实现拓展ISAM为MyISAM
http://dev.mysql.com/doc/refman/5.7/en/
https://zh.wikipedia.org/wiki/ISAM
https://en.wikipedia.org/wiki/ISAM
ISAM (an acronym for Indexed Sequential Access Method) is a method for indexing data for fast retrieval.
索引顺序存取方法(ISAM, Indexed Sequential Access Method)最初是IBM公司发展起来的一个文件系统,可以连续地(按照他们进入的顺序)或者任意地(根据索引)记录任何访问。每个索引定义了一次不同排列的记录。现在这个概念用在许多场合:
在ISAM系统,数据组织成有固定长度的记录,按顺序存储的。
In an ISAM system, data is organized into records which are composed of fixed length fields. Records are stored sequentially, originally to speed access on a tape system. A secondary set of hash tables known as indexes contain "pointers" into the tables, allowing individual records to be retrieved without having to search the entire data set. This is a departure from the contemporaneous navigational databases, in which the pointers to other data were stored inside the records themselves. The key improvement in ISAM is that the indexes are small and can be searched quickly, thereby allowing the database to access only the records it needs. Additionally modifications to the data do not require changes to other data, only the table and indexes in question.
When an ISAM file is created, index nodes are fixed, and their pointers do not change during inserts and deletes that occur later (only content of leaf nodes change afterwards). As a consequence of this, if inserts to some leaf node exceed the node's capacity, new records are stored in overflow chains. If there are many more inserts than deletions from a table, these overflow chains can gradually become very large, and this affects the time required for retrieval of a record.[4]
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful extensions.
Table 16.2 MyISAM Storage Engine Features
| Feature | Support |
|---|---|
| B-tree indexes | Yes |
| Backup/point-in-time recovery (Implemented in the server, rather than in the storage engine.) | Yes |
| Cluster database support | No |
| Clustered indexes | No |
| Compressed data | Yes (Compressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format with MyISAM are read only.) |
| Data caches | No |
| Encrypted data | Yes (Implemented in the server via encryption functions.) |
| Foreign key support | No |
| Full-text search indexes | Yes |
| Geospatial data type support | Yes |
| Geospatial indexing support | Yes |
| Hash indexes | No |
| Index caches | Yes |
| Locking granularity | Table |
| MVCC | No |
| Replication support (Implemented in the server, rather than in the storage engine.) | Yes |
| Storage limits | 256TB |
| T-tree indexes | No |
| Transactions | No |
| Update statistics for data dictionary | Yes |
Each MyISAM table is stored on disk in two files. The files have names that begin with the table name and have an extension to indicate the file type. The data file has an .MYD (MYData) extension. The index file has an .MYI(MYIndex) extension. The table definition is stored in the MySQL data dictionary.
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
Table 15.1 InnoDB Storage Engine Features
| Feature | Support |
|---|---|
| B-tree indexes | Yes |
| Backup/point-in-time recovery (Implemented in the server, rather than in the storage engine.) | Yes |
| Cluster database support | No |
| Clustered indexes | Yes |
| Compressed data | Yes |
| Data caches | Yes |
| Encrypted data | Yes (Implemented in the server via encryption functions; In MySQL 5.7 and later, data-at-rest tablespace encryption is supported.) |
| Foreign key support | Yes |
| Full-text search indexes | Yes (InnoDB support for FULLTEXT indexes is available in MySQL 5.6 and later.) |
| Geospatial data type support | Yes |
| Geospatial indexing support | Yes (InnoDB support for geospatial indexing is available in MySQL 5.7 and later.) |
| Hash indexes | No (InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.) |
| Index caches | Yes |
| Locking granularity | Row |
| MVCC | Yes |
| Replication support (Implemented in the server, rather than in the storage engine.) | Yes |
| Storage limits | 64TB |
| T-tree indexes | No |
| Transactions | Yes |
| Update statistics for data dictionary | Yes |
mysql_High.Performance.MySQL.3rd.Edition.Mar.2012
PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Exceptions: Indexes on spatial data types use R-trees; MEMORY tables also support hash indexes; InnoDB uses inverted lists for FULLTEXTindexes.- Interactive B+ Tree Implementation in C
- Interactive B+ Tree Implementation in C++
- Memory based B+ tree implementation as C++ template library
- Stream based B+ tree implementation as C++ template library
- Open Source JavaScript B+ Tree Implementation
- Perl implementation of B+ trees
- Java/C#/Python implementations of B+ trees
- C# B+ tree and related "A-List" data structures
- File based B+Tree in C# with threading and MVCC support
- Fast semi-persistent in-memory B+ Tree in TypeScript/JavaScript, MIT License
- JavaScript B+ Tree, MIT License
- JavaScript B+ Tree, Interactive and Open Source
B-tree R-tree B+-tree indexes 索引顺序存取方法 ISAM MySQL实现拓展ISAM为MyISAM的更多相关文章
- ISAM Indexed Sequential Access Method 索引顺序存取方法
ISAM Indexed Sequential Access Method 索引顺序存取方法 学习了:https://baike.baidu.com/item/ISAM/3013855 是IBM发展起 ...
- What is the difference between a binary tree, a binary search tree, a B tree and a B+ tree?
Binary Tree : It is a tree data structure in which each node has at most two children. As such there ...
- [Algorithm] Check if a binary tree is binary search tree or not
What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...
- B-Tree索引在sqlserver和mysql中的应用
在谈论数据库性能优化的时候,通常都会提到“索引”,但很多人其实并没有真正理解索引,也没有搞清楚索引为什么就能加快检索速度,以至于在实践中并不能很好的应用索引.事实上,索引是一种廉价而且十分有效的优化手 ...
- MySQL索引的缺点以及MySQL索引在实际操作中有哪些事项
以下的文章主要介绍的是MySQL索引的缺点以及MySQL索引在实际操作中有哪些事项是值得我们大家注意的,我们大家可能不知道过多的对索引进行使用将会造成滥用.因此MySQL索引也会有它的缺点: 虽然索引 ...
- 查找->静态查找表->分块查找(索引顺序表)
文字描述 分块查找又称为索引顺序查找,是顺序查找的一种改进方法.在此查找算法中,除表本身外, 还需要建立一个”索引表”.索引表中包括两项内容:关键字项(其值为该字表内的最大关键字)和指针项(指示该子表 ...
- where条件顺序与建索引顺序
查询时,如果数据量很大,where 后面的条件与建索引的顺序相同,也没有什么多少差别,聚集索引稍微快点; 但where 后面的条件与建索引顺序不同,速度会慢下来,到底慢多少,不同的机器会不一样,没有绝 ...
- MySQL索引 索引分类 最左前缀原则 覆盖索引 索引下推 联合索引顺序
MySQL索引 索引分类 最左前缀原则 覆盖索引 索引下推 联合索引顺序 What's Index ? 索引就是帮助RDBMS高效获取数据的数据结构. 索引可以让我们避免一行一行进行全表扫描.它的 ...
- 五分钟,让你明白MySQL是怎么选择索引《死磕MySQL系列 六》
系列文章 二.一生挚友redo log.binlog<死磕MySQL系列 二> 三.MySQL强人"锁"难<死磕MySQL系列 三> 四.S 锁与 X 锁的 ...
随机推荐
- IQueryable的简单封装
IQueryable的简单封装 前言 前两天在园子上看到一个问题 半年前我也考虑过这些问题,但由于这样那样的问题,没有尝试去解决. 后来公司用上了 abp vnext ,然后有一部分代码可以这样写 p ...
- Flowable学习入门
一.Flowable简介 1.Flowable是什么 Flowable是一个使用Java编写的轻量级业务流程引擎.Flowable流程引擎可用于部署BPMN 2.0流程定义(用于定义流程的行业XML标 ...
- TurtleBot 3 & 2i ROS开源实验平台
TurtleBot 3 & 2i ROS开源实验平台,全球更受欢迎的ROS平台. TurtleBot是ROS标准平台机器人,在全球开发人员和学生中深受欢迎.其有3个版本: TurtleBot1 ...
- logback运行时动态创建日志文件
package com.example.demo.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic. ...
- 图解HTTP权威指南(四)| 代理
作者简介 李先生(Lemon),高级运维工程师(自称),SRE专家(目标),梦想在35岁买一辆保时捷.喜欢钻研底层技术,认为底层基础才是王道.一切新技术都离不开操作系统(CPU.内存.磁盘).网络等. ...
- ES6 Set.Map.Symbol数据结构
一.ES6 Set数据结构 ES6新推出了Set数据结构,它与数组很类似,Set内部的成员不允许重复,每一个值在Set中都是唯一的,如果有重复的值出现会自动去重(也可以理解为忽略掉),返回的是集合对象 ...
- ECMAScript概述及浅谈const,let与块级作用域
ECMAScript可以看作javascript的标准规范,实际上javascript是ECMAScript的一门脚本语言,ECMAScript只提供了最基本的语言JavaScript对ECMAScr ...
- nodejs事件和事件循环详解
目录 简介 nodejs中的事件循环 phase详解 timers pending callbacks idle, prepare poll轮询 check close callbacks setTi ...
- 计算机考研复试真题 a+b(大数加法)
题目描述 实现一个加法器,使其能够输出a+b的值. 输入描述: 输入包括两个数a和b,其中a和b的位数不超过1000位. 输出描述: 可能有多组测试数据,对于每组数据, 输出a+b的值. 示例1 输入 ...
- 关于使用th:text获取不到值
今天在使用thymeleaf模板引擎整合SpringBoot时,对于从controller层传递过来的参数"message",无法获取. 控制层代码如下: @PostMapping ...