High Performance MySQL, Third Edition
by Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko

http://dev.mysql.com/doc/refman/5.7/en/

https://zh.wikipedia.org/wiki/ISAM

https://en.wikipedia.org/wiki/ISAM

ISAM (an acronym for Indexed Sequential Access Method) is a method for indexing data for fast retrieval.

索引顺序存取方法(ISAM, Indexed Sequential Access Method)最初是IBM公司发展起来的一个文件系统,可以连续地(按照他们进入的顺序)或者任意地(根据索引)记录任何访问。每个索引定义了一次不同排列的记录。现在这个概念用在许多场合:

  • 特指IBM公司的ISAM产品
  • 数据库系统中提供用户接口从数据文件中检索数据。
  • 通常指,数据库的索引,这种索引被大多数数据库所采用,包括关系数据库或其它。

在ISAM系统,数据组织成有固定长度的记录,按顺序存储的。

In an ISAM system, data is organized into records which are composed of fixed length fields. Records are stored sequentially, originally to speed access on a tape system. A secondary set of hash tables known as indexes contain "pointers" into the tables, allowing individual records to be retrieved without having to search the entire data set. This is a departure from the contemporaneous navigational databases, in which the pointers to other data were stored inside the records themselves. The key improvement in ISAM is that the indexes are small and can be searched quickly, thereby allowing the database to access only the records it needs. Additionally modifications to the data do not require changes to other data, only the table and indexes in question.

When an ISAM file is created, index nodes are fixed, and their pointers do not change during inserts and deletes that occur later (only content of leaf nodes change afterwards). As a consequence of this, if inserts to some leaf node exceed the node's capacity, new records are stored in overflow chains. If there are many more inserts than deletions from a table, these overflow chains can gradually become very large, and this affects the time required for retrieval of a record.[4]

https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html

MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful extensions.

Table 16.2 MyISAM Storage Engine Features

Feature Support
B-tree indexes Yes
Backup/point-in-time recovery (Implemented in the server, rather than in the storage engine.) Yes
Cluster database support No
Clustered indexes No
Compressed data Yes (Compressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format with MyISAM are read only.)
Data caches No
Encrypted data Yes (Implemented in the server via encryption functions.)
Foreign key support No
Full-text search indexes Yes
Geospatial data type support Yes
Geospatial indexing support Yes
Hash indexes No
Index caches Yes
Locking granularity Table
MVCC No
Replication support (Implemented in the server, rather than in the storage engine.) Yes
Storage limits 256TB
T-tree indexes No
Transactions No
Update statistics for data dictionary Yes
 

Each MyISAM table is stored on disk in two files. The files have names that begin with the table name and have an extension to indicate the file type. The data file has an .MYD (MYData) extension. The index file has an .MYI(MYIndex) extension. The table definition is stored in the MySQL data dictionary.

https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html

Table 15.1 InnoDB Storage Engine Features

Feature Support
B-tree indexes Yes
Backup/point-in-time recovery (Implemented in the server, rather than in the storage engine.) Yes
Cluster database support No
Clustered indexes Yes
Compressed data Yes
Data caches Yes
Encrypted data Yes (Implemented in the server via encryption functions; In MySQL 5.7 and later, data-at-rest tablespace encryption is supported.)
Foreign key support Yes
Full-text search indexes Yes (InnoDB support for FULLTEXT indexes is available in MySQL 5.6 and later.)
Geospatial data type support Yes
Geospatial indexing support Yes (InnoDB support for geospatial indexing is available in MySQL 5.7 and later.)
Hash indexes No (InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.)
Index caches Yes
Locking granularity Row
MVCC Yes
Replication support (Implemented in the server, rather than in the storage engine.) Yes
Storage limits 64TB
T-tree indexes No
Transactions Yes
Update statistics for data dictionary Yes
 
 

mysql_High.Performance.MySQL.3rd.Edition.Mar.2012

A B-Tree index speeds up data access because the storage engine doesn’t have to scan
the whole table to find the desired data. Instead, it starts at the root node (not shown
in this figure). The slots in the root node hold pointers to child nodes, and the storage
engine follows these pointers. It finds the right pointer by looking at the values in the
node pages, which define the upper and lower bounds of the values in the child nodes.
Eventually, the storage engine either determines that the desired value doesn’t exist or
successfully reaches a leaf page.
 
 
 
https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html
Most MySQL indexes (PRIMARY KEYUNIQUEINDEX, and FULLTEXT) are stored in B-trees. Exceptions: Indexes on spatial data types use R-trees; MEMORY tables also support hash indexesInnoDB uses inverted lists for FULLTEXTindexes.
 
 
 
 

B-tree R-tree B+-tree indexes 索引顺序存取方法 ISAM MySQL实现拓展ISAM为MyISAM的更多相关文章

  1. ISAM Indexed Sequential Access Method 索引顺序存取方法

    ISAM Indexed Sequential Access Method 索引顺序存取方法 学习了:https://baike.baidu.com/item/ISAM/3013855 是IBM发展起 ...

  2. What is the difference between a binary tree, a binary search tree, a B tree and a B+ tree?

    Binary Tree : It is a tree data structure in which each node has at most two children. As such there ...

  3. [Algorithm] Check if a binary tree is binary search tree or not

    What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...

  4. B-Tree索引在sqlserver和mysql中的应用

    在谈论数据库性能优化的时候,通常都会提到“索引”,但很多人其实并没有真正理解索引,也没有搞清楚索引为什么就能加快检索速度,以至于在实践中并不能很好的应用索引.事实上,索引是一种廉价而且十分有效的优化手 ...

  5. MySQL索引的缺点以及MySQL索引在实际操作中有哪些事项

    以下的文章主要介绍的是MySQL索引的缺点以及MySQL索引在实际操作中有哪些事项是值得我们大家注意的,我们大家可能不知道过多的对索引进行使用将会造成滥用.因此MySQL索引也会有它的缺点: 虽然索引 ...

  6. 查找->静态查找表->分块查找(索引顺序表)

    文字描述 分块查找又称为索引顺序查找,是顺序查找的一种改进方法.在此查找算法中,除表本身外, 还需要建立一个”索引表”.索引表中包括两项内容:关键字项(其值为该字表内的最大关键字)和指针项(指示该子表 ...

  7. where条件顺序与建索引顺序

    查询时,如果数据量很大,where 后面的条件与建索引的顺序相同,也没有什么多少差别,聚集索引稍微快点; 但where 后面的条件与建索引顺序不同,速度会慢下来,到底慢多少,不同的机器会不一样,没有绝 ...

  8. MySQL索引 索引分类 最左前缀原则 覆盖索引 索引下推 联合索引顺序

    MySQL索引 索引分类 最左前缀原则 覆盖索引 索引下推 联合索引顺序   What's Index ? 索引就是帮助RDBMS高效获取数据的数据结构. 索引可以让我们避免一行一行进行全表扫描.它的 ...

  9. 五分钟,让你明白MySQL是怎么选择索引《死磕MySQL系列 六》

    系列文章 二.一生挚友redo log.binlog<死磕MySQL系列 二> 三.MySQL强人"锁"难<死磕MySQL系列 三> 四.S 锁与 X 锁的 ...

随机推荐

  1. IQueryable的简单封装

    IQueryable的简单封装 前言 前两天在园子上看到一个问题 半年前我也考虑过这些问题,但由于这样那样的问题,没有尝试去解决. 后来公司用上了 abp vnext ,然后有一部分代码可以这样写 p ...

  2. Flowable学习入门

    一.Flowable简介 1.Flowable是什么 Flowable是一个使用Java编写的轻量级业务流程引擎.Flowable流程引擎可用于部署BPMN 2.0流程定义(用于定义流程的行业XML标 ...

  3. TurtleBot 3 & 2i ROS开源实验平台

    TurtleBot 3 & 2i ROS开源实验平台,全球更受欢迎的ROS平台. TurtleBot是ROS标准平台机器人,在全球开发人员和学生中深受欢迎.其有3个版本: TurtleBot1 ...

  4. logback运行时动态创建日志文件

    package com.example.demo.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic. ...

  5. 图解HTTP权威指南(四)| 代理

    作者简介 李先生(Lemon),高级运维工程师(自称),SRE专家(目标),梦想在35岁买一辆保时捷.喜欢钻研底层技术,认为底层基础才是王道.一切新技术都离不开操作系统(CPU.内存.磁盘).网络等. ...

  6. ES6 Set.Map.Symbol数据结构

    一.ES6 Set数据结构 ES6新推出了Set数据结构,它与数组很类似,Set内部的成员不允许重复,每一个值在Set中都是唯一的,如果有重复的值出现会自动去重(也可以理解为忽略掉),返回的是集合对象 ...

  7. ECMAScript概述及浅谈const,let与块级作用域

    ECMAScript可以看作javascript的标准规范,实际上javascript是ECMAScript的一门脚本语言,ECMAScript只提供了最基本的语言JavaScript对ECMAScr ...

  8. nodejs事件和事件循环详解

    目录 简介 nodejs中的事件循环 phase详解 timers pending callbacks idle, prepare poll轮询 check close callbacks setTi ...

  9. 计算机考研复试真题 a+b(大数加法)

    题目描述 实现一个加法器,使其能够输出a+b的值. 输入描述: 输入包括两个数a和b,其中a和b的位数不超过1000位. 输出描述: 可能有多组测试数据,对于每组数据, 输出a+b的值. 示例1 输入 ...

  10. 关于使用th:text获取不到值

    今天在使用thymeleaf模板引擎整合SpringBoot时,对于从controller层传递过来的参数"message",无法获取. 控制层代码如下: @PostMapping ...