转自:https://blog.csdn.net/dkcgx/article/details/46652021

转自:https://blog.csdn.net/Reborn_Lee/article/details/83279843

conv(向量卷积运算)
所谓两个向量卷积,说白了就是多项式乘法。 比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下: 把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x。
卷积就是“两个多项式相乘取系数”。 (1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3 所以p和q卷积的结果就是[1 3 5 3]。
记住,当确定是用升幂或是降幂排列后,下面也都要按这个方式排列,否则结果是不对的。 你也可以用matlab试试 p=[1 2 3] q=[1 1] conv(p,q) 看看和计算的结果是否相同。
conv2(二维矩阵卷积运算)
a=[1 1 1;1 1 1;1 1 1]; b=[1 1 1;1 1 1;1 1 1]; >> conv2(a,b)
ans =
     1     2     3     2     1

2     4     6     4     2

3     6     9     6     3

2     4     6     4     2

1     2     3     2     1
>> conv2(a,b,'valid')
ans =
     9
>> conv2(a,b,'same')
ans =

4     6     4

6     9     6

4     6     4
>> conv2(a,b,'full')
ans =

1     2     3     2     1

2     4     6     4     2

3     6     9     6     3

2     4     6     4     2

1     2     3     2     1

convn(n维矩阵卷积运算)

>> a=ones(5,5,5)
a(:,:,1) =

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1
a(:,:,2) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,3) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,4) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,5) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
>> b=ones(5,5,5);
>> convn(a,b,'valid')
ans =
   125
>> convn(a,b,'same')
ans(:,:,1) =
    27    36    45    36    27

36    48    60    48    36

45    60    75    60    45

36    48    60    48    36

27    36    45    36    27
ans(:,:,2) =
    36    48    60    48    36     48    64    80    64    48     60    80   100    80    60     48    64    80    64    48     36    48    60    48    36
ans(:,:,3) =
    45    60    75    60    45     60    80   100    80    60     75   100   125   100    75     60    80   100    80    60     45    60    75    60    45
ans(:,:,4) =
    36    48    60    48    36     48    64    80    64    48     60    80   100    80    60     48    64    80    64    48     36    48    60    48    36
ans(:,:,5) =
    27    36    45    36    27     36    48    60    48    36     45    60    75    60    45     36    48    60    48    36     27    36    45    36    27
>> convn(a,b)
ans(:,:,1) =
     1     2     3     4     5     4     3     2     1

2     4     6     8    10     8     6     4     2

3     6     9    12    15    12     9     6     3

4     8    12    16    20    16    12     8     4

5    10    15    20    25    20    15    10     5

4     8    12    16    20    16    12     8     4

3     6     9    12    15    12     9     6     3

2     4     6     8    10     8     6     4     2

1     2     3     4     5     4     3     2     1
ans(:,:,2) =
     2     4     6     8    10     8     6     4     2      4     8    12    16    20    16    12     8     4      6    12    18    24    30    24    18    12     6      8    16    24    32    40    32    24    16     8     10    20    30    40    50    40    30    20    10      8    16    24    32    40    32    24    16     8      6    12    18    24    30    24    18    12     6      4     8    12    16    20    16    12     8     4      2     4     6     8    10     8     6     4     2
ans(:,:,3) =
     3     6     9    12    15    12     9     6     3      6    12    18    24    30    24    18    12     6      9    18    27    36    45    36    27    18     9     12    24    36    48    60    48    36    24    12     15    30    45    60    75    60    45    30    15     12    24    36    48    60    48    36    24    12      9    18    27    36    45    36    27    18     9      6    12    18    24    30    24    18    12     6      3     6     9    12    15    12     9     6     3
ans(:,:,4) =
     4     8    12    16    20    16    12     8     4      8    16    24    32    40    32    24    16     8     12    24    36    48    60    48    36    24    12     16    32    48    64    80    64    48    32    16     20    40    60    80   100    80    60    40    20     16    32    48    64    80    64    48    32    16     12    24    36    48    60    48    36    24    12      8    16    24    32    40    32    24    16     8      4     8    12    16    20    16    12     8     4
ans(:,:,5) =
     5    10    15    20    25    20    15    10     5     10    20    30    40    50    40    30    20    10     15    30    45    60    75    60    45    30    15     20    40    60    80   100    80    60    40    20     25    50    75   100   125   100    75    50    25     20    40    60    80   100    80    60    40    20     15    30    45    60    75    60    45    30    15     10    20    30    40    50    40    30    20    10      5    10    15    20    25    20    15    10     5
ans(:,:,6) =
     4     8    12    16    20    16    12     8     4      8    16    24    32    40    32    24    16     8     12    24    36    48    60    48    36    24    12     16    32    48    64    80    64    48    32    16     20    40    60    80   100    80    60    40    20     16    32    48    64    80    64    48    32    16     12    24    36    48    60    48    36    24    12      8    16    24    32    40    32    24    16     8      4     8    12    16    20    16    12     8     4
ans(:,:,7) =
     3     6     9    12    15    12     9     6     3      6    12    18    24    30    24    18    12     6      9    18    27    36    45    36    27    18     9     12    24    36    48    60    48    36    24    12     15    30    45    60    75    60    45    30    15     12    24    36    48    60    48    36    24    12      9    18    27    36    45    36    27    18     9      6    12    18    24    30    24    18    12     6      3     6     9    12    15    12     9     6     3
ans(:,:,8) =
     2     4     6     8    10     8     6     4     2      4     8    12    16    20    16    12     8     4      6    12    18    24    30    24    18    12     6      8    16    24    32    40    32    24    16     8     10    20    30    40    50    40    30    20    10      8    16    24    32    40    32    24    16     8      6    12    18    24    30    24    18    12     6      4     8    12    16    20    16    12     8     4      2     4     6     8    10     8     6     4     2
ans(:,:,9) =
     1     2     3     4     5     4     3     2     1      2     4     6     8    10     8     6     4     2      3     6     9    12    15    12     9     6     3      4     8    12    16    20    16    12     8     4      5    10    15    20    25    20    15    10     5      4     8    12    16    20    16    12     8     4      3     6     9    12    15    12     9     6     3      2     4     6     8    10     8     6     4     2      1     2     3     4     5     4     3     2     1

conv

Convolution and polynomial multiplication

Syntax

w = conv(u,v)

w = conv(u,v,shape)

Description

w = conv(u,v)返回向量u和v的卷积。如果u和v是多项式系数的向量,则对它们进行卷积相当于将两个多项式相乘。

w = conv(u,v,shape) returns a subsection of the convolution, as specified by shape. For example, conv(u,v,'same') returns only the central part of the convolution, the same size as u, and conv(u,v,'valid') returns only the part of the convolution computed without the zero-padded edges.

w = conv(u,v,shape)返回卷积的子部分,由形状指定。 例如,conv(u,v,'same')仅返回卷积的中心部分,与u的大小相同,而conv(u,v,'valid')仅返回计算后的卷积部分而没有零填充边。


Polynomial Multiplication via Convolution

Create vectors u and v containing the coefficients of the polynomials x^2 + 1 and 2x + 7.

u = [1 0 1];
v = [2 7];

Use convolution to multiply the polynomials.

w = conv(u,v)
w = 1×4

     2     7     2     7

w contains the polynomial coefficients for  2x^3 + 7x^2 + 2x + 7.


Vector Convolution

Create two vectors and convolve them.

u = [1 1 1];
v = [1 1 0 0 0 1 1];
w = conv(u,v)
w = 1×9

     1     2     2     1     0     1     2     2     1

The length of w is length(u)+length(v)-1, which in this example is 9.


Central Part of Convolution

Create two vectors. Find the central part of the convolution of u and v that is the same size as u.

u = [-1 2 3 -2 0 1 2];
v = [2 4 -1 1];
w = conv(u,v,'same')
w = 1×7

    15     5    -9     7     6     7    -1

w has a length of 7. The full convolution would be of length length(u)+length(v)-1, which in this example would be 10.



matlab中卷积convolution与filter用法的更多相关文章

  1. matlab中norm与svd函数用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector ...

  2. MATLAB中的max函数的用法及含义

    当A是一个列向量时候,返回一个最大值,在此不在赘述. 当Amxn是一个矩阵的时候,有以下几种情况: ①   C = max(max(A)),返回矩阵最大值 ②   D = max(A,[],1),返回 ...

  3. matlab中卷积编码参数的理解

    poly2trellis(7, [171 133])代表什么意思呢?首先是7,他是1*k的vector,此处k为1,[171 133]是k*n的vector,此处n就是2,那么这个编码就是1/2码率的 ...

  4. matlab中disp函数的简单用法

    输出数组类型的数据,也可以把string类型的数据看做数组输出 输出数字 >> num = ; >> disp(num) 输出字符串 >> disp('this i ...

  5. matlab中的卷积——filter,conv之间的区别

    %Matlab提供了计算线性卷积和两个多项式相乘的函数conv,语法格式w=conv(u,v),其中u和v分别是有限长度序列向量,w是u和v的卷积结果序列向量. %如果向量u和v的长度分别为N和M,则 ...

  6. 图像卷积、相关以及在MATLAB中的操作

    图像卷积.相关以及在MATLAB中的操作 2016年7月11日 20:34:35, By ChrisZZ 区分卷积和相关 图像处理中常常需要用一个滤波器做空间滤波操作.空间滤波操作有时候也被叫做卷积滤 ...

  7. matlab中fspecial Create predefined 2-D filter以及中值滤波均值滤波以及高斯滤波

    来源: 1.https://ww2.mathworks.cn/help/images/ref/fspecial.html?searchHighlight=fspecial&s_tid=doc_ ...

  8. Matlab中imfilter()函数的用法

    Matlab中imfilter()函数的用法 功能:对任意类型数组或多维图像进行滤波.用法:B = imfilter(A,H) B = imfilter(A,H,option1,option2,... ...

  9. MATLAB中conv2的详细用法 (以及【matlab知识补充】conv2、filter2、imfilter函数原理)

    转载: 1.https://blog.csdn.net/jinv5/article/details/52874880 2.https://blog.csdn.net/majinlei121/artic ...

随机推荐

  1. 滴滴Ceph分布式存储系统优化之锁优化

    桔妹导读:Ceph是国际知名的开源分布式存储系统,在工业界和学术界都有着重要的影响.Ceph的架构和算法设计发表在国际系统领域顶级会议OSDI.SOSP.SC等上.Ceph社区得到Red Hat.SU ...

  2. 基于python tkinter的课堂点名小程序

    import datetime import json import os import random import tkinter as tk import openpyxl # 花名册文件名很多人 ...

  3. 表格取消全选框,用文字表示--Echarts ElementUi

    1.先看看实现的图 一. 添加添加复选框列 <el-table v-loading="zongShipLoading" tooltip-effect="dark&q ...

  4. SplashImage

    关于Unity启动时间过长(启动黑屏时间长)的问题 https://blog.csdn.net/h5q8n2e7/article/details/50484458 Unity3D游戏开发之“重写Uni ...

  5. JavaScript 究竟是怎样去执行的?

    摘要: 理解 JS 引擎运行原理. 作者:前端小智 原文:搞懂 JavaScript 引擎运行原理 Fundebug经授权转载,版权归原作者所有. 一些名词 JS 引擎 — 一个读取代码并运行的引擎, ...

  6. 1vue snippets

    { "Create vue template": { "prefix": "vue", "body": [ " ...

  7. 使用java8的方法引用替换硬编码

    背景 想必大家在项目中都有遇到把一个列表的多个字段累加求和的情况,也就是一个列表的总计.有的童鞋问,这个不是给前端做的吗?后端不是只需要把列表返回就行了嘛...没错,我也是这样想的,但是在一场和前端的 ...

  8. tcpdump 命令格式

    tcpdump 命令格式 tcpdump [选项] [表达式 1. 选项 常用选项: -i : 网卡名: 指定网卡,默认抓取系统第一个网卡 -n : 对地址以数字方式显示 -nn :对地址端口以数字方 ...

  9. Linux:nginx负载均衡

    前提:web服务器框架已搭建好lamp/lnmp),已配置好虚拟主机名(这个的配置在上几章中有写). nginx做负载均衡主要的模块是upstream. 1.在新的机器上安装nginx 创建用户ngi ...

  10. jzoj 6797. 【2014广州市选day2】hanoi

    Description 你对经典的hanoi塔问题一定已经很熟悉了.有三根柱子,n个大小不一的圆盘,要求大盘不能压在小盘上,初始时n个圆盘都在第一根柱子上,最少要多少步才能挪到最后一根柱子上? 现在我 ...