转自:https://blog.csdn.net/dkcgx/article/details/46652021

转自:https://blog.csdn.net/Reborn_Lee/article/details/83279843

conv(向量卷积运算)
所谓两个向量卷积,说白了就是多项式乘法。 比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下: 把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x。
卷积就是“两个多项式相乘取系数”。 (1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3 所以p和q卷积的结果就是[1 3 5 3]。
记住,当确定是用升幂或是降幂排列后,下面也都要按这个方式排列,否则结果是不对的。 你也可以用matlab试试 p=[1 2 3] q=[1 1] conv(p,q) 看看和计算的结果是否相同。
conv2(二维矩阵卷积运算)
a=[1 1 1;1 1 1;1 1 1]; b=[1 1 1;1 1 1;1 1 1]; >> conv2(a,b)
ans =
     1     2     3     2     1

2     4     6     4     2

3     6     9     6     3

2     4     6     4     2

1     2     3     2     1
>> conv2(a,b,'valid')
ans =
     9
>> conv2(a,b,'same')
ans =

4     6     4

6     9     6

4     6     4
>> conv2(a,b,'full')
ans =

1     2     3     2     1

2     4     6     4     2

3     6     9     6     3

2     4     6     4     2

1     2     3     2     1

convn(n维矩阵卷积运算)

>> a=ones(5,5,5)
a(:,:,1) =

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1

1     1     1     1     1
a(:,:,2) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,3) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,4) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
a(:,:,5) =
     1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1      1     1     1     1     1
>> b=ones(5,5,5);
>> convn(a,b,'valid')
ans =
   125
>> convn(a,b,'same')
ans(:,:,1) =
    27    36    45    36    27

36    48    60    48    36

45    60    75    60    45

36    48    60    48    36

27    36    45    36    27
ans(:,:,2) =
    36    48    60    48    36     48    64    80    64    48     60    80   100    80    60     48    64    80    64    48     36    48    60    48    36
ans(:,:,3) =
    45    60    75    60    45     60    80   100    80    60     75   100   125   100    75     60    80   100    80    60     45    60    75    60    45
ans(:,:,4) =
    36    48    60    48    36     48    64    80    64    48     60    80   100    80    60     48    64    80    64    48     36    48    60    48    36
ans(:,:,5) =
    27    36    45    36    27     36    48    60    48    36     45    60    75    60    45     36    48    60    48    36     27    36    45    36    27
>> convn(a,b)
ans(:,:,1) =
     1     2     3     4     5     4     3     2     1

2     4     6     8    10     8     6     4     2

3     6     9    12    15    12     9     6     3

4     8    12    16    20    16    12     8     4

5    10    15    20    25    20    15    10     5

4     8    12    16    20    16    12     8     4

3     6     9    12    15    12     9     6     3

2     4     6     8    10     8     6     4     2

1     2     3     4     5     4     3     2     1
ans(:,:,2) =
     2     4     6     8    10     8     6     4     2      4     8    12    16    20    16    12     8     4      6    12    18    24    30    24    18    12     6      8    16    24    32    40    32    24    16     8     10    20    30    40    50    40    30    20    10      8    16    24    32    40    32    24    16     8      6    12    18    24    30    24    18    12     6      4     8    12    16    20    16    12     8     4      2     4     6     8    10     8     6     4     2
ans(:,:,3) =
     3     6     9    12    15    12     9     6     3      6    12    18    24    30    24    18    12     6      9    18    27    36    45    36    27    18     9     12    24    36    48    60    48    36    24    12     15    30    45    60    75    60    45    30    15     12    24    36    48    60    48    36    24    12      9    18    27    36    45    36    27    18     9      6    12    18    24    30    24    18    12     6      3     6     9    12    15    12     9     6     3
ans(:,:,4) =
     4     8    12    16    20    16    12     8     4      8    16    24    32    40    32    24    16     8     12    24    36    48    60    48    36    24    12     16    32    48    64    80    64    48    32    16     20    40    60    80   100    80    60    40    20     16    32    48    64    80    64    48    32    16     12    24    36    48    60    48    36    24    12      8    16    24    32    40    32    24    16     8      4     8    12    16    20    16    12     8     4
ans(:,:,5) =
     5    10    15    20    25    20    15    10     5     10    20    30    40    50    40    30    20    10     15    30    45    60    75    60    45    30    15     20    40    60    80   100    80    60    40    20     25    50    75   100   125   100    75    50    25     20    40    60    80   100    80    60    40    20     15    30    45    60    75    60    45    30    15     10    20    30    40    50    40    30    20    10      5    10    15    20    25    20    15    10     5
ans(:,:,6) =
     4     8    12    16    20    16    12     8     4      8    16    24    32    40    32    24    16     8     12    24    36    48    60    48    36    24    12     16    32    48    64    80    64    48    32    16     20    40    60    80   100    80    60    40    20     16    32    48    64    80    64    48    32    16     12    24    36    48    60    48    36    24    12      8    16    24    32    40    32    24    16     8      4     8    12    16    20    16    12     8     4
ans(:,:,7) =
     3     6     9    12    15    12     9     6     3      6    12    18    24    30    24    18    12     6      9    18    27    36    45    36    27    18     9     12    24    36    48    60    48    36    24    12     15    30    45    60    75    60    45    30    15     12    24    36    48    60    48    36    24    12      9    18    27    36    45    36    27    18     9      6    12    18    24    30    24    18    12     6      3     6     9    12    15    12     9     6     3
ans(:,:,8) =
     2     4     6     8    10     8     6     4     2      4     8    12    16    20    16    12     8     4      6    12    18    24    30    24    18    12     6      8    16    24    32    40    32    24    16     8     10    20    30    40    50    40    30    20    10      8    16    24    32    40    32    24    16     8      6    12    18    24    30    24    18    12     6      4     8    12    16    20    16    12     8     4      2     4     6     8    10     8     6     4     2
ans(:,:,9) =
     1     2     3     4     5     4     3     2     1      2     4     6     8    10     8     6     4     2      3     6     9    12    15    12     9     6     3      4     8    12    16    20    16    12     8     4      5    10    15    20    25    20    15    10     5      4     8    12    16    20    16    12     8     4      3     6     9    12    15    12     9     6     3      2     4     6     8    10     8     6     4     2      1     2     3     4     5     4     3     2     1

conv

Convolution and polynomial multiplication

Syntax

w = conv(u,v)

w = conv(u,v,shape)

Description

w = conv(u,v)返回向量u和v的卷积。如果u和v是多项式系数的向量,则对它们进行卷积相当于将两个多项式相乘。

w = conv(u,v,shape) returns a subsection of the convolution, as specified by shape. For example, conv(u,v,'same') returns only the central part of the convolution, the same size as u, and conv(u,v,'valid') returns only the part of the convolution computed without the zero-padded edges.

w = conv(u,v,shape)返回卷积的子部分,由形状指定。 例如,conv(u,v,'same')仅返回卷积的中心部分,与u的大小相同,而conv(u,v,'valid')仅返回计算后的卷积部分而没有零填充边。


Polynomial Multiplication via Convolution

Create vectors u and v containing the coefficients of the polynomials x^2 + 1 and 2x + 7.

u = [1 0 1];
v = [2 7];

Use convolution to multiply the polynomials.

w = conv(u,v)
w = 1×4

     2     7     2     7

w contains the polynomial coefficients for  2x^3 + 7x^2 + 2x + 7.


Vector Convolution

Create two vectors and convolve them.

u = [1 1 1];
v = [1 1 0 0 0 1 1];
w = conv(u,v)
w = 1×9

     1     2     2     1     0     1     2     2     1

The length of w is length(u)+length(v)-1, which in this example is 9.


Central Part of Convolution

Create two vectors. Find the central part of the convolution of u and v that is the same size as u.

u = [-1 2 3 -2 0 1 2];
v = [2 4 -1 1];
w = conv(u,v,'same')
w = 1×7

    15     5    -9     7     6     7    -1

w has a length of 7. The full convolution would be of length length(u)+length(v)-1, which in this example would be 10.



matlab中卷积convolution与filter用法的更多相关文章

  1. matlab中norm与svd函数用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector ...

  2. MATLAB中的max函数的用法及含义

    当A是一个列向量时候,返回一个最大值,在此不在赘述. 当Amxn是一个矩阵的时候,有以下几种情况: ①   C = max(max(A)),返回矩阵最大值 ②   D = max(A,[],1),返回 ...

  3. matlab中卷积编码参数的理解

    poly2trellis(7, [171 133])代表什么意思呢?首先是7,他是1*k的vector,此处k为1,[171 133]是k*n的vector,此处n就是2,那么这个编码就是1/2码率的 ...

  4. matlab中disp函数的简单用法

    输出数组类型的数据,也可以把string类型的数据看做数组输出 输出数字 >> num = ; >> disp(num) 输出字符串 >> disp('this i ...

  5. matlab中的卷积——filter,conv之间的区别

    %Matlab提供了计算线性卷积和两个多项式相乘的函数conv,语法格式w=conv(u,v),其中u和v分别是有限长度序列向量,w是u和v的卷积结果序列向量. %如果向量u和v的长度分别为N和M,则 ...

  6. 图像卷积、相关以及在MATLAB中的操作

    图像卷积.相关以及在MATLAB中的操作 2016年7月11日 20:34:35, By ChrisZZ 区分卷积和相关 图像处理中常常需要用一个滤波器做空间滤波操作.空间滤波操作有时候也被叫做卷积滤 ...

  7. matlab中fspecial Create predefined 2-D filter以及中值滤波均值滤波以及高斯滤波

    来源: 1.https://ww2.mathworks.cn/help/images/ref/fspecial.html?searchHighlight=fspecial&s_tid=doc_ ...

  8. Matlab中imfilter()函数的用法

    Matlab中imfilter()函数的用法 功能:对任意类型数组或多维图像进行滤波.用法:B = imfilter(A,H) B = imfilter(A,H,option1,option2,... ...

  9. MATLAB中conv2的详细用法 (以及【matlab知识补充】conv2、filter2、imfilter函数原理)

    转载: 1.https://blog.csdn.net/jinv5/article/details/52874880 2.https://blog.csdn.net/majinlei121/artic ...

随机推荐

  1. 跳转语句 break 和 continue

    break跳出循环体,结束本次循环. continue结束本次循环. for(var i=0; i<5; i++){ if(i == 3) break; document.write(" ...

  2. Vue.$set的使用场景

    有这样一个需求,用户可以增加多个输入框可以编辑:     实现的思路很简单,点击增加的时候,往一个数组里面push一条数据即可: <template> <div> <di ...

  3. vue 中PDF实现在线浏览,禁止下载,打印

    需求:在线浏览pdf文件,并且禁止掉用户下载打印的效果. 分析:普通的iframe.embed标签都只能实现在线浏览pdf的功能,无法禁止掉工具栏的下载打印功能.只能尝试使用插件,pdfobject. ...

  4. android开发之splash闪屏页判断是否第一次进入app代码

    package com.david.david.zhankudemo.activity; import android.app.Activity; import android.content.Con ...

  5. 攻防世界——web新手练习区解题记录<1>(1-4题)

    web新手练习区一至四题 第一题view_source: 题目说右键不管用了,我们先获取在线场景来看一看,我们看到这样一个网页,并且右键确实点了没什么反应,而用到右键一般就是查看网页源码 用快捷键(F ...

  6. oeasy教您玩转linux010108到底哪个which

    到底哪个which 回忆上次内容 我们上次讲了查找命令位置whereis 我想找到whereis的位置怎么办?

  7. P1164 小A点菜(动态规划背包问题)

    题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家--餐馆,很低端的那种. uim指着墙上的价目表(太低级了没有菜单),说:"随便点". 题目描述 不过ui ...

  8. pie 饼图

    1最简单的饼图 // 定制饼图box4饼形图-年龄分布 (function () { const box4 = document.getElementById('box4') const mychar ...

  9. Oracle SQL Developer中查看解释计划Explain Plan的两种方法

    方法一: 比如要查看解释计划的SQL是:select * from hy_emp 那么在输入窗口输入: EXPLAIN PLAN FOR select * from hy_emp 之后执行,输出窗口会 ...

  10. springboot2.x基础教程:自动装配原理与条件注解

    spring Boot采用约定优于配置的方式,大量的减少了配置文件的使用.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置. 当springboot启动的时候,默认在容器中注入 ...