https://open.kattis.com/problems/researchproductivityindex

这道题是考场上没写出来的一道题,今年看看感觉简单到不像话,当时自己对于dp没有什么概念,所以导致考场只能空流泪

首先问期望,肯定就要确定概率。看到这个

就知道肯定一块求是不太好写的,先求上面,上面求发表的期望,那么对于期望我们有e(x) = Σxipi

这里p知道了但是xi不知道,那么我们根据题目描述我们有一个分子一个分母,分子是发表的次数,分母是论文数,首先对于任何j篇论文发表了 i 篇来讲,都无外乎两种情况,一个是上一篇就发表了这么多,这一篇虽然多了一篇论文但没有对论文发表数产生贡献,那么这种情况概率 1- p,第二种情况就是这种发表了,这种情况概率是p

那么状态转移方程显然就有

dp[i][j] = (a[i]) * dp[i - 1][j - 1] + (1 - a[i]) * dp[i - 1][j];//新增没发表和发表

我们要求最大,所以要先从几率大的开始发表,sort一遍(我脑残还降序排了,赶紧reverse),然后不发表的次数initialize一下,求出来上面那一拨东西之后就再转化成发表成功次数,pow函数求解,枚举,看哪个大就可了,真的超级简单一个dp,md去年的没做出来真是耻辱啊啊啊啊

#include <bits/stdc++.h>
using namespace std;
#define limit (100 + 5)//防止溢出
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f
#define lowbit(i) i&(-i)//一步两步
#define EPS 1e-6
#define FASTIO ios::sync_with_stdio(false);cin.tie(0);
#define ff(a) printf("%d\n",a );
#define pi(a,b) pair<a,b>
#define rep(i, a, b) for(ll i = a; i <= b ; ++i)
#define per(i, a, b) for(ll i = b ; i >= a ; --i)
#define MOD 998244353
#define traverse(u) for(int i = head[u]; ~i ; i = edge[i].next)
#define FOPEN freopen("C:\\Users\\tiany\\CLionProjects\\acm_01\\data.txt", "rt", stdin)
#define FOUT freopen("C:\\Users\\tiany\\CLionProjects\\acm_01\\dabiao.txt", "wt", stdout)
#define debug(x) cout<<x<<endl
typedef long long ll;
typedef unsigned long long ull;
inline ll read(){
ll sign = 1, x = 0;char s = getchar();
while(s > '9' || s < '0' ){if(s == '-')sign = -1;s = getchar();}
while(s >= '0' && s <= '9'){x = (x << 3) + (x << 1) + s - '0';s = getchar();}
return x * sign;
}//快读
void write(ll x){
if(x < 0) putchar('-'),x = -x;
if(x / 10) write(x / 10);
putchar(x % 10 + '0');
}
int n;
double a[limit];
double dp[limit][limit];//代表在i篇论文发表了j篇,
int main() {
#ifdef LOCAL
FOPEN;
#endif
n = read(); rep(i ,1,n){
a[i] = (1.0 * read()) / 100;
} sort(a + 1, a + 1 + n);
reverse(a + 1, a + 1 + n);
dp[0][0] = 1;
dp[1][1] = a[1];
dp[1][0] = 1 - a[1];
rep(i ,2,n)dp[i][0] = dp[i - 1][0] * (1 - a[i]), dp[i][i] = dp[i - 1][ i - 1] * a[i];
rep(i ,1,n){
rep(j, 1,i){
dp[i][j] = (a[i]) * dp[i - 1][j - 1] + (1 - a[i]) * dp[i - 1][j];//新增没发表和发表
}
}
double ans = 0;
rep(i ,1,n){
double tmp = 0;
rep(j, 1,i){
tmp += dp[i][j] * pow(j,1.0 * j / (1.0 * i));
}
ans = max(tmp, ans);
}
cout<<fixed<<setprecision(6)<<ans<<endl;
return 0;
}

2019 ACM/ICPC North America Qualifier G.Research Productivity Index(概率期望dp)的更多相关文章

  1. Bumped! 2017 ICPC North American Qualifier Contest (分层建图+dijstra)

    题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his return flight ...

  2. East Central North America 2006 Hie with the Pie /// 状压dp oj22470

    题目大意: 输入n,有n个地方(1~n)需要送pizza pizza点为0点 接下来n+1行每行n+1个值 表示 i 到 j 的路径长度 输出从0点到各点送pizza最后回到0点的最短路(点可重复走) ...

  3. North America Qualifier (2015)

    https://icpc.baylor.edu/regionals/finder/north-america-qualifier-2015 一个人打.... B 概率问题公式见代码 #include ...

  4. 有关信息ACM/ICPC竞争环境GCC/G++叠插件研究记录的扩展

    0.起因 有时.DFS总是比BFS受人喜爱--毕竟DFS简单粗暴,更,而有些东西BFS不要启动,DFS它似乎是一个可行的选择-- 但是有一个问题,DFS默认直接写入到系统堆栈.系统堆栈和足够浅,此时O ...

  5. 2019 ACM/ICPC 全国邀请赛(西安)J And And And (树DP+贡献计算)

    Then n - 1n−1 lines follow. ii-th line contains two integers f_{a_i}(1 \le f_{a_i} < i)fai​​(1≤fa ...

  6. 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)

    Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...

  7. ACM ICPC 2015 Moscow Subregional Russia, Moscow, Dolgoprudny, October, 18, 2015 G. Garden Gathering

    Problem G. Garden Gathering Input file: standard input Output file: standard output Time limit: 3 se ...

  8. ACM ICPC China final G Pandaria

    目录 ACM ICPC China final G Pandaria ACM ICPC China final G Pandaria 题意:给一张\(n\)个点\(m\)条边的无向图,\(c[i]\) ...

  9. 2014嘉杰信息杯ACM/ICPC湖南程序设计邀请赛暨第六届湘潭市程序设计竞赛

    比赛链接: http://202.197.224.59/OnlineJudge2/index.php/Contest/problems/contest_id/36 题目来源: 2014嘉杰信息杯ACM ...

随机推荐

  1. 写时复制集合 —— CopyOnWriteArrayList

    前言 JUC 下面还有一个系列的类,都是 CopyOnWriteXXX ,意思是写时复制,这个究竟是怎么回事?那就以 CopyOnWriteArrayList 为切入点,一起了解写时复制是怎么回事? ...

  2. RabbitMq 实现延时队列-Springboot版本

    rabbitmq本身没有实现延时队列,但是可以通过死信队列机制,自己实现延时队列: 原理:当队列中的消息超时成为死信后,会把消息死信重新发送到配置好的交换机中,然后分发到真实的消费队列: 步骤: 1. ...

  3. go beego框架 入门使用 (一)

    ---恢复内容开始--- 谢谢您花时间读我写的随笔,有问题的话欢迎留言,看到的话都会回复的! beego框架 分为Web版,Api版     api版目录      web版目录      (区别 : ...

  4. Ubuntu 18.04.2 LTS美化方案

    Ubuntu 18.04.2 LTS美化方案记录 根据个人经验,我将Ubuntun美化分为四个部分:1)桌面:2)对话框界面:3)图标:4)登录及锁屏界面:5)终端.由于Ubuntu系统默认采用GNO ...

  5. layui的laypage实现分页/查询

    最开始我的数据绑定使用的razor语法来绑定的 就像下面这样 @if (ViewBag.listBlog != null) { foreach (var item in ViewBag.listBlo ...

  6. 论文解读 - MaskGAN:BETTER TEXT GENERATION VIA FILLING IN THE _____

    1 简介 文本生成是自然语言处理中一个重要的研究领域,具有广阔的应用前景.当前主流的用来进行文本生成的模型主要是Seq2Seq模型,通常利用maximum likelihood和teacher for ...

  7. 激情的来源 Imagine how much you love it !

    激情来自哪里?我想可能我找到了,精髓就在那个标题! 想象你有多么爱它!你就会爱上他,想象你有多么喜欢某一个东西,你很有可能就喜欢上他,着手去了解他,接触他. 如果带着这种想象状态的激情,工作和学习会有 ...

  8. jenkins配置邮件报错:501 mail from address must be same as authorization user

    jenkins配置文件的时候,遇到如下报错: 我的配置是这样的: 最后发现是jenkins url下面的系统管理员邮件地址没写,填写与用户名一致就可以了.

  9. 调试HotSpot源代码(配视频)

    本文将详细介绍在Ubuntu16.04 LTS上对OpenJDK8进行编译,为了方便大家快速搭建起OpenJDK8的调试开发环境,我还录制了对应的视频放到了B站上,大家可以参考. 视频地址:https ...

  10. mysql中key和index的关系

    原文链接:https://blog.csdn.net/top_code/article/details/50599840