Problem Description
soda has an integer array a1,a2,…,an.
Let S(i,j) be
the sum of ai,ai+1,…,aj.
Now soda wants to know the value below:

∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)

Note: In this problem, you can consider log20 as
0.

 

Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:

The first line contains an integer n (1≤n≤105),
the number of integers in the array.

The next line contains n integers a1,a2,…,an (0≤ai≤105).
 

Output
For each test case, output the value.
 

Sample Input

1
2
1 1
 

Sample Output

12

这题题意容易懂,就是求和,其中(⌊log2S(i,j)⌋+1)的意思就是S(i,j)化成二进制后的比特位个数,因为S(i,j)不超过10^10,所以比特位不会超过35个。我们可以先初始化b[],

记录比特位为i的所有数中的最后一个数2^i-1,用sum[i]把从1到i的总和记录下来,然后用35个指针pt[i]记录以i为起点的最大下标k满足sum[k]-sum[i-1]<=b[j]。

最后注意要用G++交,C++会超时。。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define maxn 100060
ll b[50],sum[maxn];//b[1]=2^i-1
ll a[maxn];
int pt[44];//指针
void init()
{
int i,j;
b[0]=-1;
b[1]=1;
for(i=2;i<=35;i++){
b[i]=(1LL<<i)-1; //也可以是b[i]=((ll)1<<i)-1;,但不加的话会爆int
}
}
int main()
{
int n,m,i,j,T,len;
ll ans;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
sum[0]=0;ans=0;
for(i=1;i<=n;i++){
scanf("%lld",&a[i]);
sum[i]=sum[i-1]+a[i];
}
for(i=1;i<=35;i++)pt[i]=0;
for(i=1;i<=n;i++){
pt[0]=i-1;
for(j=1;j<=34;j++){
while(sum[pt[j]+1]-sum[i-1]<=b[j] && pt[j]<n){//如果a>b,那么pt[a]一定大于等于pt[b]
pt[j]++;
}
//if(sum[pt[j]]-sum[i-1]>b[j-1] && sum[pt[j]]-sum[i-1]<=b[j] && pt[j]>=i ){ 这一句可以不用写
len=(pt[j]-pt[j-1]);
ans+=(ll)j*len*i;
ans+=(ll)j*len*(pt[j-1]+1+pt[j])/2;
//}
}
}
printf("%lld\n",ans);
}
return 0;
}

hdu5358 First One的更多相关文章

  1. hdu5358 First One(尺取法)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud First One Time Limit: 4000/2000 MS (Java/ ...

  2. hdu5358 推公式+在一个区间内的尺取+枚举法

    尺取+枚举,推出公式以后就是一个枚举加尺取 但是这题的尺取不是对一个值尺取,而是在一个区间内,所以固定左边界,尺取右边界即可 #include<bits/stdc++.h> #define ...

  3. hdu-5358 First One(尺取法)

    题目链接: First One Time Limit: 4000/2000 MS (Java/Others)     Memory Limit: 131072/131072 K (Java/Other ...

  4. [hdu5358]分类统计,利用单调性优化

    题意:直接来链接吧http://acm.hdu.edu.cn/showproblem.php?pid=5358 思路:注意S(i,j)具有区间连续性且单调,而⌊log2x⌋具有区间不变性,于是考虑枚举 ...

随机推荐

  1. Linux学习笔记 | 常见错误之VMware启动linux后一直黑屏

    方法1: 宿主机(windows)管理员模式运行cmd 输入netsh winsock reset 然后重启电脑 netsh winsock reset命令,作用是重置 Winsock 目录.如果一台 ...

  2. (十六)re模块

    正则表达式并不是Python的一部分,本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言.正则表达式是用于处理字符串的强大工具,很多编程语言都支持正则表达式的语法. 字符匹配分为普通字 ...

  3. 【Linux】ntp的一些坑。你肯定遇到过

    ntpdate提示 19 Jan 10:33:11 ntpdate[29616]: no server suitable for synchronization found 这种问题从下面几个点开始验 ...

  4. 【EXP】根据字段导出数据query

    exp有些时候需要根据字段来进行导出操作 例如:想要导出hr用户中的employees中salary要大于4000的数据 这样的话需要添加where语句,需要用到的参数是query 查看下大于4000 ...

  5. 【Oracle】删除表空间

    删除表空间如果是 SQL> DROP TABLEPSACE XXXX; 是无法将数据文件一同都删除的 想要删除表空间和数据文件需要如下操作: SQL> drop tablespace XX ...

  6. 【Oracle】sum(..) over(..)用法分析

    今天再看sql优化详解的时候,提到了一个sum(..) over(..) 于是自己实验并在网上找了相关的一些文章来看 下面创建一张表: create sequence xulie increment ...

  7. 用动图讲解分布式 Raft

    一.Raft 概述 Raft 算法是分布式系统开发首选的共识算法.比如现在流行 Etcd.Consul. 如果掌握了这个算法,就可以较容易地处理绝大部分场景的容错和一致性需求.比如分布式配置系统.分布 ...

  8. (009)每日SQL学习:Oracle各个键说明(转)

    原文地址:http://www.agiledata.org/essays/keys.html 本文概述关系数据库中为表指定主键的策略.主要关注于何时使用自然键或者代理键的问题.有些人会告诉你应该总是使 ...

  9. Java反序列化: 基于CommonsCollections4的Gadget分析 Java 序列化与反序列化安全分析

    Java反序列化: 基于CommonsCollections4的Gadget分析 welkin 京东安全 5天前 https://mp.weixin.qq.com/s/OqIWUsJe9XV39SPN ...

  10. 五万字长文带你学会Spring

    Sping Spring概念介绍 spring是啥呢,你在斗地主的时候把别人打爆了那叫spring, 你成功的追到了你爱慕已久的女神,人生中的春天来了,那也叫sping 好了别看我老婆了,咱来讲讲啥是 ...