文章转自【机器学习炼丹术】

线性回归解决的是回归问题,逻辑回归相当于是线性回归的基础上,来解决分类问题。

1 公式

线性回归(Linear Regression)是什么相比不用多说了。格式是这个样子的:

\(f_{w,b}(x)=\sum_i{w_ix_i}+b\)

而逻辑回归(Logistic Regression)的样子呢?

\(f_{w,b}(x)=\sigma(\sum_i{w_ix_i}+b)\)

要记住的第一句话:逻辑回归可以理解为在线性回归后加了一个sigmoid函数。将线性回归变成一个0~1输出的分类问题。

2 sigmoid

sigmoid函数就是:

\(\sigma(z)=\frac{1}{1+e^{-z}}\)

函数图像是:



线性回归得到大于0的输出,逻辑回归就会得到0.5~1的输出;

线性回归得到小于0的输出,逻辑回归就会得到0~0.5的输出;


这篇文章的重点,在于线性回归的参数估计使用的最小二乘法,而而逻辑回归使用的是似然估计的方法。(当然,两者都可以使用梯度下降的方法)。


3 似然估计逻辑回归参数

举个例子,现在我们有了一个训练数据集,是一个二分类问题:



上面的\(x^1\)是样本,下面的\(C_1\)是类别,总共有两个类别。

现在假设我们有一个逻辑回归的模型:

\(f_{w,b}(x)=\sigma(\sum_i{w_ix_i}+b)\)

那么\(f_{w,b}(x^1)\)的结果,就是一个0~1的数,我们可以设定好,假设这个数字就是是类别\(C_1\)的概率,反之,1减去这个数字,就是类别\(C_2\)的概率。

似然简单的理解,就是让我们上面的数据集出现的概率最大

我们来理解一下:

  1. \(x_1\)是\(C_1\)的概率是\(f_{w,b}(x^1)\);
  2. \(x_2\)是\(C_1\)的概率是\(f_{w,b}(x^2)\);
  3. \(x_3\)是\(C_2\)的概率是\(1-f_{w,b}(x^3)\);
  4. ……
  5. \(x_N\)是\(C_1\)的概率是\(f_{w,b}(x^N)\);

样本之间彼此独立,那么上面那个数据集的概率是什么?是每一个样本的乘积,这个就是似然Likelihood:

我们希望这个w,b的参数估计值,就是能获得最大化似然的那个参数。也就是:

加上负号之后,就可以变成最小化的问题。当然,加上一个log并不会影响整个的w,b的估计值。因为\(L(w,b)\)最大的时候,\(log(L(w,b))\)也是最大的,log是个单调递增的函数。所以可以得到下面的:

【注意:所有的log其实是以e为底数的自然对数】

log又可以把之前的乘积和,转换成加法。

\(log(L(w,b))=log(f(x^1))+log(f(x^2))+log(1-f(x^3))...\)

然后,为了更加简化这个算是,我们将\(C_1, C_2\)数值化,变成1和0,然后每一个样本的真实标签用\(y\)来表示,所以就可以得到:

\(log(L(w,b))=\sum_i^N{ylog(f(x^i))+(1-y)log(1-f(x^i))}\)

【有点像是二值交叉熵,然而其实就是二值交叉熵。。】

  • 当y=1,也就是类别是\(C_1\)的时候,这个是\(log(f(x^i))\)
  • 当y=0,也就是类别是\(C_2\)的时候,这个是\(1-log(f(x^i))\)

所以其实我们得到的损失函数是:

\(loss=-log(L(w,b))=-\sum_i^N{ylog(f(x^i))+(1-y)log(1-f(x^i))}\)

之前说了,要找到让这个loss最小的时候的w和b,那怎么找?

【无情万能的梯度下降】

所以计算\(\frac{\partial loss}{\partial w}\),然后乘上学习率就好了。这里就不继续推导了,有耐心的可以慢慢推导,反正肯定能推出来的。

这里放个结果把:

\(\frac{-\partial lnL(w,b)}{\partial w_i}=\sum_n^N{-(y^n-f_{w,b}(x^n))x_i^n}\)

  • 其中\(w_i\)为第i个要估计的参数,第i个特征;
  • \(x^n_i\)是第n个样本的第i个特征的值;
  • \(y^n\)是第n个样本的真实类别,0或者1。

【小白学AI】线性回归与逻辑回归(似然参数估计)的更多相关文章

  1. 【Coursera】线性回归和逻辑回归

    一.线性回归 1.批量梯度下降法 每次对参数进行一次迭代时,都要扫描一遍输入全集 算法可以收敛到局部最优值 当迭代多次之后,每次迭代参数的改变越小 2.随机梯度下降法 对于一个输入样本,对参数进行一次 ...

  2. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

  3. 【数据分析】线性回归与逻辑回归(R语言实现)

    文章来源:公众号-智能化IT系统. 回归模型有多种,一般在数据分析中用的比较常用的有线性回归和逻辑回归.其描述的是一组因变量和自变量之间的关系,通过特定的方程来模拟.这么做的目的也是为了预测,但有时也 ...

  4. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  5. 线性回归、逻辑回归(LR)

    线性回归 回归是一种极易理解的模型,就相当于y=f(x),表明自变量 x 和因变量 y 的关系.最常见问题有如 医生治病时的望.闻.问.切之后判定病人是否生了什么病,其中的望闻问切就是获得自变量x,即 ...

  6. Machine Learning 学习笔记 (1) —— 线性回归与逻辑回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 梯度下降法 (Gradien ...

  7. Coursera DeepLearning.ai Logistic Regression逻辑回归总结

    既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有 ...

  8. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  9. 机器学习(三)—线性回归、逻辑回归、Softmax回归 的区别

    1.什么是回归?  是一种监督学习方式,用于预测输入变量和输出变量之间的关系,等价于函数拟合,选择一条函数曲线使其更好的拟合已知数据且更好的预测未知数据. 2.线性回归  于一个一般的线性模型而言,其 ...

随机推荐

  1. centos7----创建虚拟环境

    优点 使不同的应用开发环境独立 环境升级不影响其他应用,也不会影响全局的python环境 它可以防止系统出现包管理混乱和版本的冲突 安装 pip install virtualenv 创建虚拟环境 v ...

  2. Fetch.ai的突破使急速闪电共识成为现实

    Jonathan Ward 区块链的终结问题是由于技术限制,它已经成为区块链技术被广泛采用的障碍.用外行的话来说,终结时间可以看作是事务首次提交到网络并被确认为有效之间的等待时间.为了成功地革新我们的 ...

  3. Spring Boot读取配置文件的几种方式

    Spring Boot获取文件总的来说有三种方式,分别是@Value注解,@ConfigurationProperties注解和Environment接口.这三种注解可以配合着@PropertySou ...

  4. 【题解】p2388阶乘之乘

    原题传送门 题解一堆\(O(n)\)算法真给我看傻了. 考虑\(10=2*5\),因子2肯定更多,所以计算因子5的个数即可. 从5到n这\(n-5+1\)个数的阶乘里面,都各自含有一个因子\(5=1* ...

  5. day12 文件操作(下)

    目录 一.x模式(控制文件操作模式,与rwa同级) 1 特点 2 格式 二.b模式(控制文件读写内容的模式,与t同级) 1.b模式和t模式的区别 2 b模式应用 3 循环读取文件 三.文件操作的其他方 ...

  6. Linux上运行安卓应用:安装使用Anbox

    文章目录 #0x0 简介 #0x1 安装教程 #0x11 第一步,安装需要的内核模块 #0x12 安装Anbox #0x2 使用Anbox #0x21 一些简单的设置 #0x22 安装APK #0x3 ...

  7. JS基础知识点(二)

    == 与 === 对于 == 来说,如果对比双方的类型不一样的话,就会进行类型转换,就会进行如下判断流程: 1.首先会判断两者类型是否相同,相同则会进行严格相等比较=== 2.判断是否在对比null和 ...

  8. scrapy 基础组件专题(二):下载中间件

    下载器中间件是介于Scrapy的request/response处理的钩子框架,是用于全局修改Scrapy request和response的一个轻量.底层的系统. 1.激活Downloader Mi ...

  9. python 迭代器(一):迭代器基础(一) 语言内部使用 iter(...) 内置函数处理可迭代对象的方式

    简介 在 Python 中,所有集合都可以迭代.在 Python 语言内部,迭代器用于支持: 1.for 循环2.构建和扩展集合类型3.逐行遍历文本文件4.列表推导.字典推导和集合推导5.元组拆包6. ...

  10. Java对象与Json字符串的转换

    Java对象与Json字符串的转换 JSON是一种轻量级的数据交换格式,常用于前后端的数据交流 后端 : 前端 Java对象 > JsonString Java对象 < jsonStrin ...