1、Java 对象头

以 32 位虚拟机为例

普通对象

|--------------------------------------------------------------|
|                     Object Header (64 bits)                  |
|------------------------------------|-------------------------|
|        Mark Word (32 bits)         |    klass Word (32 bits) |
|------------------------------------|-------------------------|

数组对象

|---------------------------------------------------------------------------------|
|                                 Object Header (96 bits)                         |
|--------------------------------|-----------------------|------------------------|
|        Mark Word(32bits)       |    Klass Word(32bits) |  array length(32bits)  |
|--------------------------------|-----------------------|------------------------|

其中 Mark Word 结构为

|-------------------------------------------------------|--------------------|
|                  Mark Word (32 bits)                  |       State        |
|-------------------------------------------------------|--------------------|
|  hashcode:25         | age:4 | biased_lock:0 | 01     |       Normal       |
|-------------------------------------------------------|--------------------|
|  thread:23 | epoch:2 | age:4 | biased_lock:1 | 01     |       Biased       |
|-------------------------------------------------------|--------------------|
|               ptr_to_lock_record:30          | 00     | Lightweight Locked |
|-------------------------------------------------------|--------------------|
|               ptr_to_heavyweight_monitor:30  | 10     | Heavyweight Locked |
|-------------------------------------------------------|--------------------|
|                                              | 11     |    Marked for GC   |
|-------------------------------------------------------|--------------------|

64 位虚拟机 Mark Word

|--------------------------------------------------------------------|--------------------|
|                        Mark Word (64 bits)                         |       State        |
|--------------------------------------------------------------------|--------------------|
| unused:25 | hashcode:31 | unused:1 | age:4 | biased_lock:0 | 01    |       Normal       |
|--------------------------------------------------------------------|--------------------|
| thread:54 | epoch:2     | unused:1 | age:4 | biased_lock:1 | 01    |       Biased       |
|--------------------------------------------------------------------|--------------------|
|             ptr_to_lock_record:62                          | 00    | Lightweight Locked |
|--------------------------------------------------------------------|--------------------|
|             ptr_to_heavyweight_monitor:62                  | 10    | Heavyweight Locked |
|--------------------------------------------------------------------|--------------------|
|                                                            | 11    |    Marked for GC   |
|--------------------------------------------------------------------|--------------------|

参考资料

https://stackoverflow.com/questions/26357186/what-is-in-java-object-header

2、Monitor 原理

Monitor 被翻译为监视器管程

每个 Java 对象都可以关联一个 Monitor 对象,如果使用 synchronized 给对象上锁(重量级)之后,该对象头的 Mark Word 中就被设置指向 Monitor 对象的指针

Monitor 结构如下

  • 刚开始 Monitor 中 Owner 为 null

  • 当 Thread-2 执行 synchronized(obj) 就会将 Monitor 的所有者 Owner 置为 Thread-2,Monitor中只能有一个 Owner

  • 在 Thread-2 上锁的过程中,如果 Thread-3,Thread-4,Thread-5 也来执行 synchronized(obj),就会进入 EntryList BLOCKED

  • Thread-2 执行完同步代码块的内容,然后唤醒 EntryList(阻塞队列) 中等待的线程来竞争锁,竞争是非公平的

  • 图中 WaitSet 中的 Thread-0,Thread-1 是之前获得过锁,但条件不满足进入 WAITING 状态的线程,后面讲 wait-notify 时会分析

注意:

  • synchronized 必须是进入同一个对象的 monitor 才有上述的效果

  • 不加 synchronized 的对象不会关联监视器,不遵从以上规则

3、synchronized 原理

static final Object lock = new Object();
static int counter = 0;

public static void main(String[] args) {
   synchronized (lock) {
       counter++;
  }
}

对应的字节码为

public static void main(java.lang.String[]);
   descriptor: ([Ljava/lang/String;)V
   flags: ACC_PUBLIC, ACC_STATIC
   Code:
     stack=2, locals=3, args_size=1
        0: getstatic     #2                  // <- lock引用 (synchronized开始)
        3: dup                               // 复制一份引用
        4: astore_1                          // lock引用 -> slot 1
        5: monitorenter                      // 将 lock对象 MarkWord 置为 Monitor 指针
        6: getstatic     #3                  // <- i
        9: iconst_1                          // 准备常数 1
       10: iadd                              // +1
       11: putstatic     #3                  // -> i
       14: aload_1                           // <- lock引用
       15: monitorexit                       // 将 lock对象 MarkWord 重置, 唤醒 EntryList
       16: goto          24  // 19-23 为异常处理
       19: astore_2                          // e -> slot 2
       20: aload_1                           // <- lock引用
       21: monitorexit                       // 将 lock对象 MarkWord 重置, 唤醒 EntryList
       22: aload_2                           // <- slot 2 (e)
       23: athrow                            // throw e
       24: return
     Exception table: // 异常检测
        from    to  target type
            6    16    19   any // 6-16 行出现异常 目标为19行
           19    22    19   any // 19-22 行出现异常 目标为19行
     LineNumberTable:
       line 8: 0
       line 9: 6
       line 10: 14
       line 11: 24
     LocalVariableTable:
       Start  Length  Slot  Name   Signature
           0      25     0  args   [Ljava/lang/String;
     StackMapTable: number_of_entries = 2
       frame_type = 255 /* full_frame */
         offset_delta = 19
         locals = [ class "[Ljava/lang/String;", class java/lang/Object ]
         stack = [ class java/lang/Throwable ]
       frame_type = 250 /* chop */
         offset_delta = 4

注意

方法级别的 synchronized 不会在字节码指令中有所体现

Java并发(十九)----Monitor原理及Synchronized原理的更多相关文章

  1. Java 并发编程:volatile的使用及其原理

    Java并发编程系列: Java 并发编程:核心理论 Java并发编程:Synchronized及其实现原理 Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) Java 并发编程 ...

  2. Java 并发编程——Executor框架和线程池原理

    Eexecutor作为灵活且强大的异步执行框架,其支持多种不同类型的任务执行策略,提供了一种标准的方法将任务的提交过程和执行过程解耦开发,基于生产者-消费者模式,其提交任务的线程相当于生产者,执行任务 ...

  3. Java并发编程-阻塞队列(BlockingQueue)的实现原理

    背景:总结JUC下面的阻塞队列的实现,很方便写生产者消费者模式. 常用操作方法 常用的实现类 ArrayBlockingQueue DelayQueue LinkedBlockingQueue Pri ...

  4. “全栈2019”Java第九十九章:局部内部类与继承详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  5. Java 并发编程——Executor框架和线程池原理

    Java 并发编程系列文章 Java 并发基础——线程安全性 Java 并发编程——Callable+Future+FutureTask java 并发编程——Thread 源码重新学习 java并发 ...

  6. “全栈2019”Java第二十九章:数组详解(中篇)

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  7. “全栈2019”Java第十九章:关系运算符、条件运算符和三元运算符

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  8. Java并发(十九):final实现原理

    final在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量. 一旦你将引用声明作final,你将不能改变这个引用了,编译器会检查代码,如果你试图将变量再次初始化的话,编译器会报编 ...

  9. Java并发编程之深入理解线程池原理及实现

    Java线程池在实际的应用开发中十分广泛.虽然Java1.5之后在JUC包中提供了内置线程池可以拿来就用,但是这之前仍有许多老的应用和系统是需要程序员自己开发的.因此,基于线程池的需求背景.技术要求了 ...

  10. 【转】Java 并发编程:volatile的使用及其原理

    一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchronized关键字来解决这些个问题,不过如果 ...

随机推荐

  1. Java爬虫实战系列——常用的Java网络爬虫库

    常用的Java网络爬虫库 Java 开发语言是业界使用最广泛的开发语言之一,在互联网从业者中具有广泛的使用者,Java 网络爬虫可以帮助 Java 开发人员以快速.简单但广泛的方式为各种目的抓取数据. ...

  2. 文盘Rust -- 生命周期问题引发的 static hashmap 锁

    2021年上半年,撸了个rust cli开发的框架,基本上把交互模式,子命令提示这些cli该有的常用功能做进去了.项目地址:https://github.com/jiashiwen/interactc ...

  3. Laf 云开发平台及其实现原理

    Laf 产品介绍 自我介绍 大家好,我是来自 Laf 团队的王子俊,很高兴今天能在这里给大家分享我们 Laf 云开发平台及其实现原理.本来想说一点什么天气之类的话作为开头,但主持人都说完啦,我就不多说 ...

  4. Springboot简单功能示例-5 使用JWT进行授权认证

    springboot-sample 介绍 springboot简单示例 跳转到发行版 查看发行版说明 软件架构(当前发行版使用) springboot hutool-all 非常好的常用java工具库 ...

  5. AcWing 第102场周赛 题解

    第一次ak周赛,写篇题解纪念一下 第一题 给定两个长度为 n n n 的整数序列 a 1 , a 2 , - , a n a_1,a_2,-,a_n a1​,a2​,-,an​ 以及 b 1 , b ...

  6. Vue2系列(lqz)——slot插槽 (内容分发)、2 transition过渡、3 生命周期、4 swiper学习、5 自定义组件的封装、6 自定义指令、7 过滤器

    文章目录 1 slot插槽 (内容分发) 1.1 基本使用 1.2 插槽应用场景1 1.3 插槽应用场景2 1.4 具名插槽 2 transition过渡 3 生命周期 4 swiper学习 5 自定 ...

  7. CF451B

    题目简化和分析: 这题就是判断将一段翻转后是否能变为升序的数组. 我的方法是保存原数组每一个数出现的位置(相同任意一个),让后另外用一个数组存储排好序后的原数组,逐一进行比较. 若同,则跳到下一个元素 ...

  8. Go包介绍与初始化:搞清Go程序的执行次序

    Go包介绍与初始化:搞清Go程序的执行次序 目录 Go包介绍与初始化:搞清Go程序的执行次序 一.main.main 函数:Go 应用的入口函数 1.1 main.main 函数 1.2 main.m ...

  9. 一篇了解springboot3请求参数种类及接口测试

    SpringBoot3数据请求: 原始数据请求: //原始方式 @RequestMapping("/simpleParam") public String simpleParam( ...

  10. Linux g++减小可执行文件大小

    去掉参数-g,产生不带有调试信息的可执行文件 加上参数-O2,产生尽可能小和尽可能快的代码 strip 可执行文件 去掉目标文件中的一些符号表.调试符号表信息,以减小程序的大小 参考文献: g++重要 ...