题目链接

题目

题目描述

Bessie has two crisp red apples to deliver to two of her friends in the herd. Of course, she travels the C (1 <= C <= 200,000)

cowpaths which are arranged as the usual graph which connects P (1 <= P <= 100,000) pastures conveniently numbered from 1..P: no cowpath leads from a pasture to itself, cowpaths are bidirectional, each cowpath has an associated distance, and, best of all, it is always possible to get from any pasture to any other pasture. Each cowpath connects two differing pastures \(P1_i\) (1 <= \(P1_i\) <= P) and \(P2_i\)​ (1 <= \(P2_i\) <= P) with a distance between them of \(D_i\). The sum of all the distances \(D_i\)​ does not exceed 2,000,000,000.

What is the minimum total distance Bessie must travel to deliver both apples by starting at pasture PB (1 <= PB <= P) and visiting pastures PA1 (1 <= PA1 <= P) and PA2 (1 <= PA2 <= P)

in any order. All three of these pastures are distinct, of course.

Consider this map of bracketed pasture numbers and cowpaths with distances:
3 2 2
[1]-----[2]------[3]-----[4]
\ / \ /
7\ /4 \3 /2
\ / \ /
[5]-----[6]------[7]
1 2
If Bessie starts at pasture [5] and delivers apples to pastures [1] and [4], her best path is:
5 -> 6-> 7 -> 4* -> 3 -> 2 -> 1*
with a total distance of 12.

输入描述

  • Line 1: Line 1 contains five space-separated integers: C, P, PB, PA1, and PA2
  • Lines 2..C+1: Line i+1 describes cowpath i by naming two pastures it connects and the distance between them: \(P1_i, P2_i, D_i\)

输出描述

  • Line 1: The shortest distance Bessie must travel to deliver both apples

示例1

输入

9 7 5 1 4
5 1 7
6 7 2
4 7 2
5 6 1
5 2 4
4 3 2
1 2 3
3 2 2
2 6 3

输出

12

题解

知识点:最短路。

从 \(PB\) 出发必须经过 \(PA1,PA2\) 的最短路,显然我们分别考虑 \(PA1,PA2\) 作为终点即可。

先以三个点为起点跑三次最短路,然后讨论两条路径 PB->PA1->PA2,PB->PA2->PA1 的最小值即可。

时间复杂度 \(O((C+P)\log C)\)

空间复杂度 \(O(C+P)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; const int N = 100007, M = 200007 << 1; template<class T>
struct Graph {
struct edge {
int v, nxt;
T w;
};
int idx;
vector<int> h;
vector<edge> e; Graph(int n, int m) :idx(0), h(n + 1), e(m + 1) {} void clear(int n, int m) {//全局使用时清零,确定范围防止超时
idx = 0;
h.assign(n + 1, 0);
e.assign(m + 1, { 0,0,0 });
} void add(int u, int v, T w) {
e[++idx] = edge{ v,h[u],w };
h[u] = idx;
}
};
Graph<int> g(N, M); void dijkstra(int st, vector<int> &dis) {
dis.assign(dis.size(), 0x3f3f3f3f);
vector<bool> vis(dis.size(), 0);
struct node {
int v, w;
bool operator<(node a) const {
return w > a.w;
}
};
priority_queue<node> pq;
dis[st] = 0;
pq.push({ st,0 });
while (!pq.empty()) {
int u = pq.top().v;
pq.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = g.h[u];i;i = g.e[i].nxt) {
int v = g.e[i].v, w = g.e[i].w;
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
pq.push({ v, dis[v] });
}
}
}
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int C, P, PB, PA1, PA2;
cin >> C >> P >> PB >> PA1 >> PA2;
for (int i = 1;i <= C;i++) {
int P1, P2, D;
cin >> P1 >> P2 >> D;
g.add(P1, P2, D);
g.add(P2, P1, D);
}
vector<int> disB(P + 1), disA1(P + 1), disA2(P + 1);
dijkstra(PB, disB);
dijkstra(PA1, disA1);
dijkstra(PA2, disA2);
cout << min(disB[PA1] + disA1[PA2], disB[PA2] + disA2[PA1]) << '\n';
return 0;
}

NC24755 [USACO 2010 Dec S]Apple Delivery的更多相关文章

  1. Usaco 2010 Dec Gold Exercise(奶牛健美操)

    /*codevs 3279 二分+dfs贪心检验 堆版本 re一个 爆栈了*/ #include<cstdio> #include<queue> #include<cst ...

  2. USACO Apple Delivery

    洛谷 P3003 [USACO10DEC]苹果交货Apple Delivery 洛谷传送门 JDOJ 2717: USACO 2010 Dec Silver 1.Apple Delivery JDOJ ...

  3. BZOJ 2100: [Usaco2010 Dec]Apple Delivery( 最短路 )

    跑两遍最短路就好了.. 话说这翻译2333 ---------------------------------------------------------------------- #includ ...

  4. USACO翻译:USACO 2013 DEC Silver三题

    USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...

  5. USACO翻译:USACO 2014 DEC Silver三题

    USACO 2014 DEC SILVER 一.题目概览 中文题目名称 回程 马拉松 奶牛慢跑 英文题目名称 piggyback marathon cowjog 可执行文件名 piggyback ma ...

  6. [USACO 2017 Dec Gold] Tutorial

    Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...

  7. 洛谷P3003 [USACO10DEC]苹果交货Apple Delivery

    P3003 [USACO10DEC]苹果交货Apple Delivery 题目描述 Bessie has two crisp red apples to deliver to two of her f ...

  8. 洛谷——P3003 [USACO10DEC]苹果交货Apple Delivery

    P3003 [USACO10DEC]苹果交货Apple Delivery 这题没什么可说的,跑两遍单源最短路就好了 $Spfa$过不了,要使用堆优化的$dijkstra$ 细节:1.必须使用优先队列+ ...

  9. 洛谷 P3003 [USACO10DEC]苹果交货Apple Delivery

    洛谷 P3003 [USACO10DEC]苹果交货Apple Delivery 题目描述 Bessie has two crisp red apples to deliver to two of he ...

  10. NC24724 [USACO 2010 Feb S]Chocolate Eating

    NC24724 [USACO 2010 Feb S]Chocolate Eating 题目 题目描述 Bessie has received \(N (1 <= N <= 50,000)\ ...

随机推荐

  1. TOEFL | 202307 改革 · 新版题型总结

    目录 Listening(36min) Reading(35min) Speaking(16min) Writing(29min) Listening(36min) 2 conversation,3 ...

  2. Spring boot 自定义kafkaTemplate的bean实例进行生产消息和发送消息

    本文为博主原创,未经允许不得转载: 目录: 1.  自定义生产消息 kafkaTemplate 实例 2.  封装 kafka 发送消息的service 方法 3.  测试 kafka 发送消息ser ...

  3. Java21 + SpringBoot3集成easy-captcha实现验证码显示和登录校验

    目录 前言 相关技术简介 easy-captcha 实现步骤 引入maven依赖 定义实体类 定义登录服务类 定义登录控制器 前端登录页面实现 测试和验证 总结 附录 使用Session缓存验证码 前 ...

  4. 【rt-thread】移植touchgfx时出现如下错误和现象

    [问题描述] 基于cubemx生成的touchgfx工程,移植入rt-threadkeil编译报重复定义 加载到文件组中的文件奇妙的出现了 Src_ .Device_.i2c_.Keil_  前缀,这 ...

  5. JS - Array - 在数组的指定下标添加或替换元素 。 也可删除指定下标的元素

    一,首先介绍下 js Array对象 中的 splice 方法 . ( splice在英文中是剪接的意思 ) 1,定义和用法 splice() 方法用于插入.删除或替换数组的元素. 注意:这种方法会改 ...

  6. [转帖]Oracle11g实现只读表方法

    1.1 ALTER TABLE tab_name READ ONLY 参考:https://www.cnblogs.com/chinas/p/8440460.html Oracle 11g开始支持设置 ...

  7. [转帖]oracle通过pid查找执行SQL

    通过TOP 命令查看PID:1560 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1560 oracle 20 0 38.978g 0. ...

  8. [转帖]Oracle迁移到MySQL时数据类型转换问题

    https://www.cnblogs.com/yeyuzhuanjia/p/17431979.html 最近在做"去O"(去除Oracle数据库)的相关工作,需要将Oracle表 ...

  9. [转帖]TiDB 查询优化及调优系列(三)慢查询诊断监控及排查

    https://zhuanlan.zhihu.com/p/509984029   本章节介绍如何利用 TiDB 提供的系统监控诊断工具,对运行负载中的查询进行排查和诊断.除了 上一章节介绍的通过 EX ...

  10. [转帖]如何对minio进行性能测试和分析

    https://developer.aliyun.com/article/1006775   环境详情 server(组成集群,ec为12:4) ip hosts 硬盘 storage01 172.1 ...