AcWing 456. 车站分级
原题链接AcWing 456. 车站分级
抽象出题意,停靠过的车站的等级一定严格大于为停靠过的车站的等级,且不存在环,例如车站\(A\)等级大于车站\(B\),则\(A >= B + 1\),不妨从\(B\)向\(A\)连一条边,表示等级关系,题目要求车站的最小等级中最大是多少,即求最长路,那这就是一个差分约束系统。
而对于差分约束系统:
如果边权有正有负:则使用\(spfa\)
如果边权非负,那么可以使用\(tarjan\)缩点+递推,\(拓扑排序 + 递推\)的方式求最长路或者最短路。
同时,对于本题,把未停靠的站点和停靠的分成两个集合,那么需要连边最坏情况下是要\(n^2\),考虑最坏情况下,一共有\(1000\)趟车,每一趟都是从1~n站,其中停靠了\(500\)个站,还有\(500\)个未停靠,那么这时候连边就是\(500 * 500 * 1000 = 250000000\),显然,复杂度爆炸,但是考虑一种优化,在集合中间建立虚拟结点,左边边权是\(0\),右边边权是\(1\),那么就优化成了\(O(n + m)\)连边方式了,再算一下最坏情况下的数据量,\((500 + 500) * 1000 = 1000000\),这样就可以过了,直接优化成了线性,并且完全等价于\(O(n^2)\)连边的方式。

// Problem: 车站分级
// Contest: AcWing
// URL: https://www.acwing.com/problem/content/458/
// Memory Limit: 64 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
const int N = 2010, M = 1E6 + 10;
int h[N], e[M], ne[M], w[M], idx;
int n, m;
int d[N];
int dist[N];
int seq[N], cnt;
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
d[b]++;
}
void topsort() {
queue<int> q;
for (int i = 1; i <= n + m; i++) {
if (!d[i]) q.push(i);
}
while (q.size()) {
int t = q.front();
q.pop();
seq[cnt++] = t;
for (int i = h[t]; ~i; i = ne[i]) {
int j = e[i];
if (--d[j] == 0) q.push(j);
}
}
}
int main() {
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 1; i <= m; i++) {
int cnt;
scanf("%d", &cnt);
memset(st, 0, sizeof st);
int start = n, end = 1;
while (cnt--) {
int k;
scanf("%d", &k);
start = min(start, k);
end = max(end, k);
st[k] = true;
}
int vir = n + i;
for (int j = start; j <= end; j++) {
if (!st[j]) add(j, vir, 0);
else add(vir, j, 1);
}
}
topsort();
for (int j = 1; j <= n; j++) dist[j] = 1;
for (int j = 0; j < n + m; j++) {
int var = seq[j];
for (int k = h[var]; ~k; k = ne[k]) {
dist[e[k]] = max(dist[e[k]], dist[var] + w[k]);
}
}
int res = 0;
for (int i = 1; i <= n; i++) res = max(res, dist[i]);
printf("%d\n", res);
return 0;
}
AcWing 456. 车站分级的更多相关文章
- 洛谷P1983 车站分级
P1983 车站分级 297通过 1.1K提交 题目提供者该用户不存在 标签图论贪心NOIp普及组2013 难度普及/提高- 提交该题 讨论 题解 记录 最新讨论 求帮忙指出问题! 我这么和(diao ...
- 【洛谷P1983】车站分级
车站分级 题目链接 首先,可以发现火车停靠站点的大小是没有什么规律的, 火车可以停靠在级别<=当前级别的站点,必须停靠在级别>=当前最高级别的站点 但是所有没有被停靠的站点级别一定比所有被 ...
- 【NOIP2013 普及组】车站分级
[NOIP2013 普及组]车站分级 一.题目 [NOIP2013 普及组]车站分级 时间限制: 1 Sec 内存限制: 128 MB 提交: 3 解决: 0 [提交][状态][讨论版] 题目描述 ...
- 洛谷P1983车站分级
洛谷\(P1983\)车站分级(拓扑排序) 目录 题目描述 题目分析 思路分析 代码实现 题目描述 题目在洛谷\(P1983\)上 题目: 一条单向的铁路线上,依次有编号为 \(1, 2, -, ...
- 洛谷 P1983 车站分级
题目链接 https://www.luogu.org/problemnew/show/P1983 题目描述 一条单向的铁路线上,依次有编号为 1,2,…,n的 n个火车站.每个火车站都有一个级别,最低 ...
- 洛谷P1983车站分级题解
题目 这个题非常毒瘤,只要还是体现在其思维难度上,因为要停留的车站的等级一定要大于不停留的车站的等级,因此我们可以从不停留的车站向停留的车站进行连边,然后从入度为0的点即不停留的点全都入队,然后拓扑排 ...
- NOIp2013 车站分级 【拓扑排序】By cellur925
题目传送门 我们注意到,题目中说:如果这趟车次停靠了火车站 x,则始发站.终点站之间所有级别大于等于火车站x的都必须停靠.有阶级关系,满满的拓扑排序氛围.但是,如果我们按大于等于的关系连,等于的情况就 ...
- luogu1980 车站分级
题目大意 一些火车站排成一行.给出一些火车的停靠站情况,要求对每一个火车,其经过且不停靠的站的级别比它任意停靠的站的级别小.问所有车站最少需要多少个级别. 题解 不要只看到这道题的背景设立在一个区间上 ...
- [NOIP2013]车站分级 解题报告
妈蛋这道普及组水(神)题搞了我非常久. 一. 首先一个非常显然的事情就是每一个火车告诉了站与站之间的等级关系,所以拓扑求最长路. 可是发现暴力建边的话最坏能够达到500*500,所以时间复杂度有O(M ...
- LG1983 「NOIP2013」车站分级 拓扑排序
问题描述 LG1983 题解 考虑建立有向边\((a,b)\),代表\(a\)比\(b\)低级. 于是枚举每一辆车次经过的车站\(x \in [l,r]\),如果不是车辆停靠的车站,则从\(x\)向每 ...
随机推荐
- Node: 将时间戳转换成日期并分组
// 对时间戳按日期进行分组 let moment = require('moment') let timestamp_array = [ 1645059333000, 1613523333000, ...
- JavaWeb和MVC三层架构
JavaWeb 概述 网站发布和部署一定要依托技术语言吗: 不一定,一个网站可以直接发布和部署,因为因为浏览器能够识别网页只需要两样东西,网络和静态页面,还有一个装在他们的容器,比如 nginx. 静 ...
- 合并两个不同远程仓库的Git命令
一.需求场景描述 远程仓库A:http://XXXA.git 远程gitlab,团队协作开发主仓库,新仓库 远程仓库B:http://XXXB.git 旧仓库 从A仓库和B仓库,都对同一个项目进行过开 ...
- 部署ELK+filebeat收集nginx日志
前言 简介 ELK(Elasticsearch.Logstash.Kibana)是开源的实时日志收集分析解决方案. Elasticsearch:开源搜索引擎,是一个基于Lucene.分布式.通过Res ...
- PHP秒杀面试题
什么是秒杀系统:秒杀系统是一个处理大量并发用户请求的系统,通常用于限时促销或特定活动中,用户可以在特定时间内以抢购的方式购买商品或服务. 秒杀系统可能面临的挑战是什么?秒杀系统可能面临以下挑战: 高并 ...
- Matlab机器人工具箱安装教程
参考以下博客 https://blog.csdn.net/AprilsHell/article/details/90722892
- 11、Spring之基于注解的AOP
11.1.环境搭建 创建名为spring_aop_annotation的新module,过程参考9.1节 11.1.1.配置打包方式和依赖 注意:AOP需要在IOC的基础上实现,因此需要导入IOC的依 ...
- 修改DataTable中的值
DataTable dt ;for (int i = 0; i < dt.Rows.Count; i++) { DataRow row = dt.Rows[i]; row.BeginEdit() ...
- 基于 LLM 的知识图谱另类实践
本文整理自社区用户陈卓见在「夜谈 LLM」主题分享上的演讲,主要包括以下内容: 利用大模型构建知识图谱 利用大模型操作结构化数据 利用大模型使用工具 利用大模型构建知识图谱 上图是之前,我基于大语言模 ...
- doris建表报错 errCode = 2, detailMessage = Scale of decimal must between 0 and 9. Scale was set to: 10
doris建表报错 问题背景 当我从Mpp库向doris库中导数据时,需要先创建对应的数据表,将Mpp库中表的建表语句略作修改后,在doris服务器上运行 CREATE TABLE opt_conne ...