体细胞突变检测分析流程-系列1( WES&Panel)
Sentieon●体细胞变异检测-系列1


WES or Panel 变异检测分析
以下给出的步骤脚本主要针对WES or Panel (200~500x depth, AF > 1%)。(查看脚本时,可以左右滑动)
第一步:Alignment
# ******************************************
# 1a. Mapping reads with BWA-MEM, sorting for tumor sample
# ******************************************
( sentieon bwa mem -M -R "@RG\tID:$tumor\tSM:$tumor\tPL:$platform" \
-t $nt -K 10000000 $fasta $tumor_fastq_1 $tumor_fastq_2 || \
echo -n 'error' ) | \
sentieon util sort -o tumor_sorted.bam -t $nt --sam2bam -i - # ******************************************
# 1b. Mapping reads with BWA-MEM, sorting for normal sample
# ******************************************
( sentieon bwa mem -M -R "@RG\tID:$normal\tSM:$normal\tPL:$platform" \
-t $nt -K 10000000 $fasta $normal_fastq_1 $normal_fastq_2 ||
echo -n 'error' ) | \
sentieon util sort -o normal_sorted.bam -t $nt --sam2bam -i -
第二步:PCR Duplicate Removal (Skip For Amplicon)
# ******************************************
# 2a. Remove duplicate reads for tumor sample.
# ******************************************
# ******************************************
sentieon driver -t $nt -i tumor_sorted.bam \
--algo LocusCollector \
--fun score_info \ tumor_score.txt sentieon driver -t $nt -i tumor_sorted.bam \
--algo Dedup \
--score_info tumor_score.txt \
--metrics tumor_dedup_metrics.txt \ tumor_deduped.bam
# ******************************************
# 2b. Remove duplicate reads for normal sample.
# ******************************************
sentieon driver -t $nt -i normal_sorted.bam \
--algo LocusCollector \
--fun score_info \ normal_score.txt sentieon driver -t $nt -i normal_sorted.bam \
--algo Dedup \
--score_info normal_score.txt \
--metrics normal_dedup_metrics.txt \ normal_deduped.bam
第三步: Base Quality Score Recalibration (Skip For Small Panel)
# ******************************************
# 3a. Base recalibration for tumor sample
# ******************************************
sentieon driver -r $fasta -t $nt -i tumor_deduped.bam --interval $BED \
--algo QualCal \
-k $dbsnp \
-k $known_Mills_indels \
-k $known_1000G_indels \ tumor_recal_data.table
# ******************************************
# 3b. Base recalibration for normal sample
# ******************************************
sentieon driver -r $fasta -t $nt -i normal_deduped.bam --interval $BED \
--algo QualCal \
-k $dbsnp \
-k $known_Mills_indels \
-k $known_1000G_indels \
normal_recal_data.table
第四步:Variant Calling
sentieon driver -r $fasta -t $nt -i tumor_deduped.bam -i normal_deduped.bam --interval $BED -interval_padding 10\
--algo TNscope \
--tumor_sample $TUMOR_SM \
--normal_sample $NORMAL_SM \
--dbsnp $dbsnp \
--sv_mask_ext 10 \
--max_fisher_pv_active 0.05 \
--min_tumor_allele_frac 0.01 \
--filter_t_alt_frac 0.01 \
--max_normal_alt_frac 0.005 \
--max_normal_alt_qsum 200 \
--max_normal_alt_cnt 5 \
--assemble_mode 4 \
[--pon panel_of_normal.vcf \]
output_tnscope.pre_filter.vcf.gz
第五步:Variant Filtration
bcftools annotate -x "FILTER/triallelic_site" output_tnscope.pre_filter.vcf.gz | \
bcftools filter -m + -s "insignificant" -e "(PV>0.25 && PV2>0.25)" | \
bcftools filter -m + -s "insignificant" -e "(INFO/STR == 1 && PV>0.05)" | \
bcftools filter -m + -s "orientation_bias" -e "FMT/FOXOG[0] == 1" | \
bcftools filter -m + -s "strand_bias" -e "SOR > 3" | \
bcftools filter -m + -s "low_qual" -e "QUAL < 20" | \
bcftools filter -m + -s "short_tandem_repeat" -e "RPA[0]>=10" | \
bcftools filter -m + -s "noisy_region" -e "ECNT>5" | \
bcftools filter -m + -s "read_pos_bias" -e "FMT/ReadPosRankSumPS[0] < -8" | \
bcftools norm -f $fasta -m +any | \
sentieon util vcfconvert - output_tnscope.filtered.vcf.gz
体细胞突变检测分析流程-系列1( WES&Panel)的更多相关文章
- 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 16S 基础知识、分析工具和分析流程详解
工作中有个真理:如果你连自己所做的工作的来龙去脉都讲不清楚,那你是绝对不可能把这份工作做好的. 这适用于任何行业.如果你支支吾吾,讲不清楚,那么说难听点,你在混日子,没有静下心来工作. 检验标准:随时 ...
- C# WinForm开发系列 - ListBox/ListView/Panel
转自会飞的小猪文章 C# WinForm开发系列 - ListBox/ListView/Panel 在博客园看到了一篇博文,觉得很不错,就转载过来了. 包含自定义绘制的ListBox, 带拖动, ...
- LR性能测试分析流程
LR性能测试分析流程 一. 判断测试结果的有效性 (1)在整个测试场景的执行过程中,测试环境是否正常. (2)测试场景的设置是否正确.合理. (3)测试结果是否直接暴露出系统的一些问题. (4 ...
- Graylog2进阶 打造基于Nginx日志的Web入侵检测分析系统
对于大多数互联网公司,基于日志分析的WEB入侵检测分析是不可或缺的. 那么今天我就给大家讲一讲如何用graylog的extractor来实现这一功能. 首先要找一些能够识别的带有攻击行为的关键字作为匹 ...
- 【译】.NET 的新的动态检测分析
随着 Visual Studio 16.9 的发布,Visual Studio 中的检测分析变得更好用了.本文介绍我们新的动态分析工具.这个工具显示了函数被调用的确切次数,并且比我们以前的静态检测工具 ...
- 『计算机视觉』物体检测之RefineDet系列
Two Stage 的精度优势 二阶段的分类:二步法的第一步在分类时,正负样本是极不平衡的,导致分类器训练比较困难,这也是一步法效果不如二步法的原因之一,也是focal loss的motivation ...
- 目标检测之R-CNN系列
Object Detection,在给定的图像中,找到目标图像的位置,并标注出来. 或者是,图像中有那些目标,目标的位置在那.这个目标,是限定在数据集中包含的目标种类,比如数据集中有两种目标:狗,猫. ...
- 【目标检测】R-CNN系列与SPP-Net总结
目录 1. 前言 2. R-CNN 2.0 论文链接 2.1 概述 2.2 pre-training 2.3 不同阶段正负样本的IOU阈值 2.4 关于fine-tuning 2.5 对文章的一些思考 ...
- ITS简要分析流程(using Qiime)
Qiime安装 参考资料:http://blog.sina.com.cn/s/blog_83f77c940101h2rp.html Qiime script官方说明http://qiime.org/s ...
随机推荐
- 四月十六号java基础知识
1.如果没有一个机制来限制对类中成员的访问,则很可能会造成错误的输入如果在类的成员声明前面加上修饰符private,则无法从类的外部访问到该类内部的成员,而只能被该类自身访问和修改,而不能被任何其他类 ...
- LeeCode 942 增减字符串匹配
LeeCode 942 题目描述: 由范围 [0,n] 内所有整数组成的 n+1 个整数的排列序列可以表示为长度为 n 的字符串 s ,其中: 如果 perm[i] < perm[i + 1] ...
- handler+looper+messagequeue源码解析
https://www.jianshu.com/p/b4d745c7ff7ahandler机制源码1.handler机制的作用在多线程的场景中,将子线程中需要更新UI的操作信息传递到UI主线程.多个线 ...
- vue表单绑定v-model
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Go语言实现文件服务器
主调函数,设置路由表 package main import ( "fmt" "net/http" "store/handler" ) fu ...
- Mysql8.0为什么取消了缓存查询的功能
首先我们介绍一下MySQL的缓存机制 [MySQL缓存机制]简单的说就是缓存sql文本及查询结果,如果运行完全相同的SQL,服务器直接从缓存中取到结果,而不需要再去解析和执行SQL. 但如果表中任何数 ...
- Junit启动测试mybatis xml文件BindingException: Invalid bound statement问题
背景:1.正常启动,xml文件放在java目录和resource目录下均正常 2.junit启动,xml文件放在resource目录下正常,放在java目录下报BindingException错误 m ...
- C51笔记-郭天祥-第二章 从点灯大师开始
第2章 Keil软件的使用及流水灯设计 Keil的用法:用Keil建立工程: 工程配置: C51单片机程序软件仿真.单步.全速.断点设置和变量查看等: 用一个完整的C51程序操控LED亮灭: 调用库 ...
- FLV文件分析
很久没看,做下关于FLV文件格式知识点回顾! 一.简单介绍 FLV(Flash Video)是Adobe公司推出的一种媒体封装格式.一个FLV文件,每个Tag类型都属于一个流.也就是说一 ...
- [Pytorch框架] 4.3 fastai
文章目录 4.3 fastai 4.3.1 fastai介绍 fastai库 fast.ai课程 Github 4.3.2 fastai实践 MNIST 4.3.3 fastai文档翻译 import ...