#min-max容斥,FWT#洛谷 3175 [HAOI2015]按位或
分析
按位去看,最终的答案要求 \(E(\max S)\) 就是 \(S\) 出现的期望时间。
根据min-max容斥,\(E(\max S)=\sum_{T\subset S}(-1)^{|T|-1}E(\min T)\)
那么 \(E(\min T)\) 也就是 \(T'\subset T\) 出现的期望时间,与不在 \(T\) 中的 1 不能出现的概率有关
\]
下面这个求和可以用子集卷积实现,FWT 的或卷积就可以做到 \(O(2^nn)\)
代码
#include <cstdio>
#define rr register
using namespace std;
const int N=1050011;
int n,al,xo[N]; double f[N],ans;
inline void FWT_OR(double *f){
for (rr int p=2;p<=n;p<<=1){
rr int len=p>>1;
for (rr int i=0;i<n;i+=p)
for (rr int j=i;j<i+len;++j)
f[j+len]+=f[j];
}
}
signed main(){
scanf("%d",&n),n=1<<n,al=n-1;
for (rr int i=0;i<n;++i) scanf("%lf",&f[i]);
for (rr int i=1;i<n;++i) xo[i]=xo[i&(i-1)]+1;
FWT_OR(f);
for (rr int i=1;i<n;++i)
if (1-f[al^i]>1e-8)
ans+=(xo[i]&1?1:-1)/(1-f[al^i]);
if (ans<1e-8) printf("INF");
else printf("%.8lf",ans);
return 0;
}
#min-max容斥,FWT#洛谷 3175 [HAOI2015]按位或的更多相关文章
- [洛谷P3175][HAOI2015]按位或
题目大意:刚开始有一个数$x=0$,每秒钟有一个数$y\in[0,2^n)(n\leqslant20)$按一定概率随机出现,数$i$的概率为$p_i$,保证$\sum\limits_{i=0}^{2^ ...
- 洛谷 P3175 [HAOI2015]按位或
题目分析 与hdu4336 Card Collector相似,使用min-max容斥. 设\(\max(S)\)表示集合\(S\)中最后一位出现的期望时间. 设\(\min(S)\)表示集合\(S\) ...
- 「PKUWC2018」随机游走(min-max容斥+FWT)
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...
- [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)
[luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 【洛谷U20626】gemo 容斥 FWT 高斯消元
题目大意 给你一个无向图,有\(m\)个询问,每次给你一个点\(x\)和一个点集\(S\),问你从\(x\)开始走,每次从一个点随机的走到与这个点相邻的点,问你访问\(S\)中每个点至少一次的期望步数 ...
- bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】
其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...
- P3175-[HAOI2015]按位或【min-max容斥,FWT】
正题 题目链接:https://www.luogu.com.cn/problem/P3175 题目大意 开始有一个\(n\)位二进制数\(s=0\),每次有\(p_i\)概率选取数字\(i\)让\(s ...
- BZOJ4033或洛谷3177 [HAOI2015]树上染色
BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有 ...
- 洛谷 P5643 - [PKUWC2018]随机游走(Min-Max 容斥+FWT+树上高斯消元,hot tea)
题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S)) ...
随机推荐
- win32 - 使用VerQueryValue获得应用程序的名称
比如: Google Chrome: 类似于任务管理器中显示名字,见下图 那么我们就需要使用VerQueryValue, 从指定的版本信息资源中检索指定的版本信息.若要检索适当的资源,在调用VerQu ...
- Qt开发Activex笔记(三):C#调用Qt开发的Activex控件
若该文为原创文章,转载请注明原文出处本文章博客地址:https://blog.csdn.net/qq21497936/article/details/113789727 长期持续带来更多项目与技术分享 ...
- Android Compose开发
目录 好处 入门 Composable 布局 其他组件 列表 verticalScroll 延迟列表 内容内边距 性能 修饰符 偏移量 requiredSize 滚动 添加间距Spacer Butto ...
- 【转载】nltk英文自定义分词
NLTK项目地址: https://github.com/nltk/nltk_data/tree/gh-pages/packages NLTK基础分词用例: https://www.cnblogs.c ...
- springboot多线程TaskExecutor的使用,以及使用@Async实现异步调用
目录 @Async实现异步调用 pom.xml 启动类 定义controller 定义接口 实现类 将isDone换程CountDownLatch来判断线程是否执行完实例化CountDownLatch ...
- 这波操作看麻了!十亿行数据,从71s到1.7s的优化之路。
你好呀,我是歪歪. 春节期间关注到了一个关于 Java 方面的比赛,很有意思.由于是开源的,我把项目拉下来试图学(白)习(嫖)别人的做题思路,在这期间一度让我产生了一个自我怀疑: 他们写的 Java ...
- 分组聚合不再难:Pandas groupby使用指南
处理大量数据时,经常需要对数据进行分组和汇总,groupby为我们提供了一种简洁.高效的方式来实现这些操作,从而简化了数据分析的流程. 1. 分组聚合是什么 分组是指根据一个或多个列的值将数据分成多个 ...
- Java //数组的反转
1 //数组的反转 2 //方式一 3 System.out.println("数组的反转"); 4 5 // for(int i = 0; i <arr.length/2; ...
- HttpClientHandler VS SocketsHttpHandler
.NET Framework 和 .NET Core 2.0 及更低版本中由 HttpClient 使用的默认消息处理程序为HttpClientHandler. 从 .NET Core 2.1 开始, ...
- 摆脱鼠标操作 - vscode - vim - 官方说明文档 github上的,防止打不开,这里发一个
Key - command done - command done with VS Code specific customization ️ - some variations of the com ...