NameNode故障处理

1)需求

NameNode进程挂了并且存储的数据也丢失了

2)故障模拟

(1)kill -9 NameNode进程

kill -9 19886

(2)删除NameNode储存的数据

rm -rf /opt/module/hadoop-3.1.3/data/dfs/name/*

3)问题解决 原文:sw-code

(1)拷贝SecondaryNameNode中的数据到原NameNode存储数据目录

[hadoop@hadoop102 dfs]$ scp -r hadoop@hadoop104:/opt/module/hadoop-3.1.3/data/dfs/namesecondary/* ./name/

(2)重新启动NameNode

[hadoop@hadoop102 dfs]$ hdfs --daemon start namenode

(3)向集群上传一个文件

注意:生产环境一般是NameNode的高可用,即配置多个NameNode来处理此类情况

集群安全模式&磁盘修复

1)安全模式:文件系统只接受读数据请求,而不接受删除、修改等变更请求

2)进入安全模式场景

  • NameNode在加载镜像文件和编辑日志期间处于安全模式。
  • NameNode在接收DataNode注册时,处于安全模式。

3)退出安全模式条件

dfs.namenode.safemode.min.datanodes:最小可用的datanode数量大于0,默认0。

dfs.namenode.safemode.threshold-pct:副本达到最小要求的block占系统总block的百分比,默认0.999f。(只允许丢一个块)

dfs.namenode.safemode.extension:稳定时间,默认值3000ms,即30s。

4)基本语法

集群处于安全模式,不能执行重要操作(写操作),集群启动完成后,自动退出安全模式。

bin/hdfs dfsadmin -safemode get
bin/hdfs dfsadmin -safemode enter
bin/hdfs dfsadmin -safemode leave
bin/hdfs dfsadmin -safemode wait

慢磁盘监控

找出哪块磁盘慢的方法如下

1)通过心跳未联系时间

一般出现慢磁盘现象,会影响到DataNodeNameNode之间的心跳,正常情况下心跳时间间隔是3s。超过2s说明有异常。

2)fio命令,测试磁盘的读写性能

使用该命令安装测试工具

sudo yum install -y fio

(1)顺序读测试

[hadoop@hadoop102 hadoop-3.1.3]$ sudo fio -filename=/home/hadoop/test.log -direct=1 -iodepth 1 -thread -rw=read -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_r

Run status group 0 (all jobs):
READ: bw=106MiB/s (111MB/s), 106MiB/s-106MiB/s (111MB/s-111MB/s), io=6334MiB (6642MB), run=60003-60003msec

注意更改路径:-filename=/home/your username/test.log

(2)顺序写测试

[hadoop@hadoop102 hadoop-3.1.3]$ sudo fio -filename=/home/hadoop/test.log -direct=1 -iodepth 1 -thread -rw=write -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_w

Run status group 0 (all jobs):
WRITE: bw=106MiB/s (111MB/s), 106MiB/s-106MiB/s (111MB/s-111MB/s), io=6351MiB (6660MB), run=60002-60002msec

(3)随机写测试

[hadoop@hadoop102 hadoop-3.1.3]$ sudo fio -filename=/home/hadoop/test.log -direct=1 -iodepth 1 -thread -rw=randwrite -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_randw

Run status group 0 (all jobs):
WRITE: bw=93.1MiB/s (97.6MB/s), 93.1MiB/s-93.1MiB/s (97.6MB/s-97.6MB/s), io=5584MiB (5855MB), run=60004-60004msec

(3)混合随机读写测试

[hadoop@hadoop102 hadoop-3.1.3]$ sudo fio -filename=/home/hadoop/test.log -direct=1 -iodepth 1 -thread -rw=randrw -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_r_w -ioscheduler=noop

Run status group 0 (all jobs):
READ: bw=44.9MiB/s (47.1MB/s), 44.9MiB/s-44.9MiB/s (47.1MB/s-47.1MB/s), io=2697MiB (2828MB), run=60002-60002msec
WRITE: bw=44.0MiB/s (47.2MB/s), 44.0MiB/s-44.0MiB/s (47.2MB/s-47.2MB/s), io=2700MiB (2831MB), run=60002-60002msec

小文件归档

1)HDFS存储小文件弊端:100个1K文件块和100个128M的文件块,占用NN内存大小一样

每个文件按块存储,每个块的元数据存储在NameNode的内存中,因此HDFS存储小文件会非常低效。因为大量的小文件会耗尽NameNode中的大部分内存。但注意,存储小文件所需的磁盘容量和数据块大小无关。例如,一个1MB的文件设置未128MB的块存储,实际使用的是1MB的磁盘空间,而不是128MB。

2)解决存储小文件办法之一

HDFS存档文件或HAR文件,是一个更高效的文件存档工具,它将文件存入HDFS块,在减少NameNode内存使用的同时,允许堆文件进行透明访问。具体说来,HDFS存档文件对内还是一个独立文件,对NameNode而言却是一个整体,减少了NameNode的内存。

3)实操案例

(1)需要启动YARN进程

start-yarn.sh

(2)归档文件

/input目录里面的所有文件归档成一个叫input.har的归档文件,并把归档后的文件存储到/output目录下

hadoop archive -archiveName input.har -p /input /output

(3)查看归档

hadoop fs -ls har:///output/input.har

(4)拷贝文件

hadoop fs -cp har:///output/input.har/test.txt /

大数据之Hadoop中HDFS的故障排除的更多相关文章

  1. 大数据:Hadoop(HDFS 的设计思路、设计目标、架构、副本机制、副本存放策略)

    一.HDFS 的设计思路 1)思路 切分数据,并进行多副本存储: 2)如果文件只以多副本进行存储,而不进行切分,会有什么问题 缺点 不管文件多大,都存储在一个节点上,在进行数据处理的时候很难进行并行处 ...

  2. 大数据笔记05:大数据之Hadoop的HDFS(数据管理策略)

            HDFS中数据管理与容错 1.数据块的放置       每个数据块3个副本,就像上面的数据库A一样,这是因为数据在传输过程中任何一个节点都有可能出现故障(没有办法,廉价机器就是这样的) ...

  3. 大数据笔记04:大数据之Hadoop的HDFS(基本概念)

    1.HDFS是什么? Hadoop分布式文件系统(HDFS),被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点. 2.HDFS ...

  4. 大数据:Hadoop(HDFS 读写数据流程及优缺点)

    一.HDFS 写数据流程 写的过程: CLIENT(客户端):用来发起读写请求,并拆分文件成多个 Block: NAMENODE:全局的协调和把控所有的请求,提供 Block 存放在 DataNode ...

  5. 大数据笔记07:大数据之Hadoop的HDFS(特点)

    1. HDFS的特点: (1)数据冗余,硬件容错 (2)流式的数据访问(写一次读多次,不能直接修改已写入的数据,只能删除之后再去写入) (3)存储大文件 2. HDFS适用性和局限性 适用性:(1)适 ...

  6. 大数据笔记06:大数据之Hadoop的HDFS(文件的读写操作)

    1. 首先我们看一看文件读取: (1)客户端(java程序.命令行等等)向NameNode发送文件读取请求,请求中包含文件名和文件路径,让NameNode查询元数据. (2)接着,NameNode返回 ...

  7. 大数据笔记09:大数据之Hadoop的HDFS使用

    1. HDFS使用: HDFS内部中提供了Shell接口,所以我们可以以命令行的形式操作HDFS

  8. 大数据和Hadoop生态圈

    大数据和Hadoop生态圈 一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop ...

  9. hadoop(一)之初识大数据与Hadoop

    前言 从今天起,我将一步一步的分享大数据相关的知识,其实很多程序员感觉大数据很难学,其实并不是你想象的这样,只要自己想学,还有什么难得呢? 学习Hadoop有一个8020原则,80%都是在不断的配置配 ...

  10. Hadoop专业解决方案-第1章 大数据和Hadoop生态圈

    一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop生态圈小组已经翻译完成,在此 ...

随机推荐

  1. Docker学习路线12:开发者体验

    到目前为止,我们只讨论了使用Docker来部署应用程序.然而,Docker也是一个极好的用于开发应用程序的工具.可以采用一些不同的建议来改善开发体验. 在应用程序中使用docker-compose以方 ...

  2. 深入了解图片Base64编码

    title: 深入了解图片Base64编码 date: 2024/4/8 10:03:22 updated: 2024/4/8 10:03:22 tags: Base64编码 图片转换 HTTP请求 ...

  3. HarmonyOS系统级推送服务,打造消息通知新体验

    8月4日,第五届华为开发者大会 2023(HDC.Together)再次启航.在本次大会上,华为为广大用户带来了HarmonyOS 4全新升级的体验,同时,针对HarmonyOS应用的开发,此次也全面 ...

  4. Qt调用动态库的三种方式(linux)

    本文章主要记录Qt在linux电脑上调用so库的三种调用方式 方式一:静态加载so库 方式二:动态加载so库(QLibrary) 方式三:动态加载so库(dlopen)   其他: 封装的so库叫做: ...

  5. 牛客网-SQL专项训练24

    ①下列选项关于游标的作用叙述正确的是(D) 解析: 游标是一种从包括多条数据记录的结果集中每次提取一条记录以便处理的机制,可以看做是查询结果的记录指针.游标与视图类似,也是基于基表的临时表对象,也能够 ...

  6. 链路分析 K.O “五大经典问题”

    ​简介:链路分析是基于已存储的全量链路明细数据,自由组合筛选条件与聚合维度进行实时分析,可以满足不同场景的自定义诊断需求. 作者:涯海 链路追踪的 "第三种玩法" 提起链路追踪,大 ...

  7. HarmonyOS 实战开发-Worker子线程中解压文件

    介绍 本示例介绍在Worker子线程使用@ohos.zlib提供的zlib.decompressfile接口对沙箱目录中的压缩文件进行解压操作,解压成功后将解压路径返回主线程,获取解压文件列表. 效果 ...

  8. [FAQ][Hardhat] Error HH501: Couldn't download compiler version 0.8.0. Please check your connection.

    当使用 npx hardhat compile 命令编译智能合约时,会先下载你在 hardhat.config.js 配置中对应版本的 solidity 编译器. 当网络不可达时,就会提示无法下载的错 ...

  9. [Gin] gin.H{} 与 map[string]interface{}

    gin.H 中的 H 是对 map[string]interface{} 定义的新类型,用来简化生成 map 数据时的书写. // H is a shortcut for map[string]int ...

  10. WPF 自己封装 Skia 差量绘制控件

    使用 Skia 能做到在多个不同的平台使用相同的一套 API 绘制出相同界面效果的图片,可以将图片绘制到应用程序的渲染显示里面.在 WPF 中最稳的方法就是通过 WriteableBitmap 作为承 ...